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Abstract— This work describes the design and implementa-
tion of a self-balancing two-wheeled robot. The system is similar
to the classical unstable, non-linear mechanical control problem
of an inverted pendulum on a cart. This paper derives the lin-
earized system dynamics equations and approaches the control
problem, of stabilizing the robot, using a Linear Quadratic
Regulator for state feedback. Simulation results, using a
Kalman Filter for state estimation, show that the controller
manages to reject disturbances and stabilize the system using
only a gyroscope and an accelerometer. The control algorithm
is implemented using both Simulink- and C-programming.
A complimentary filter is used for state reconstruction in
the final implementation. A Kalman filter implementation is
also approached, however it does not perform as well as the
complementary filter. The resulting implementation manages
to stabilize the pendulum in an upright position and reject
disturbances such as gentle pushes. An alternative controller
also returns the robot to its initial position in response to a
disturbance.

TABLE I
LIST OF PARAMETERS AND NUMERICAL VALUES USED

Parameter Value Description
Mb 0.595 kg Mass of robot
Mw 0.031 kg Mass of the wheels,
Jb 0.0015 kgm2 Moment of inertia about CoM
r 0.04 m radius of wheels
Jw 5.96e-05 kgm2 Moment of inertia for the wheels
Lm 0.08 m Distance from wheel axle to CoM
Ke 0.468 V s/rad EMF constant
Km 0.317 Nm/A Motor constant
R 6.69 Ohm Motor resistance
b 0.002 Nms/rad Viscous friction constant
g 9.81 m/s2 Gravitational constant

I. PROJECT OVERVIEW

This report documents the design and implementation of a
self-balancing robot, which is an unstable system; the basic
model is that of an inverted pendulum balancing on two
wheels. This work details the derivation of the model of
the system and lays out the framework of the robot’s control
system. It also shows the full implementation of a control
system stabilizing the robot.

The robot is built using Lego Mindstorm, an educational
product first released by Lego in 1998. The Lego Mindstorm
kit is equipped with a 32-bit ARM7 microprocessor with a
bootloader modified to run the nxtOSEK real-time operating
system.
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In order to devise a control scheme for the robot, a
mathematical model of the physical system was derived
from free body diagrams and basic equations of motion. The
mathematical model is then linearized around the operation
point, namely a tilt angle of 0 degrees.

The control scheme used is a Linear Quadratic Regulator
(LQR) for state-feedback control. The LQR is setup to drive
the tilt angle to zero. The initial focus is on stabilizing the
unstable system and rejecting disturbances. A complemen-
tary filter is used to reconstruct an angle estimate to use
in the LQR controller. The information used to estimate the
current system states comes from three primary sensors: a 3-
axis accelerometer, a 1-axis gyroscope, and motor encoders.

II. RELATED WORK

The self-balancing robot is a system similar to the classical
mechanical system of an inverted pendulum on a cart. It is
an interesting system to control since it is relatively simple,
yet non-linear and unstable. The literature is extensive from
hobbyists and academic projects [3, 4, 7]; to advanced
commercial products such as the Segway [5].

Optimal control with the LQ controller is often used to
solve the problem of stabilizing the unstable robot system
without the need for manual tuning of the state-feedback
controller [1]. The balancing robot in this paper follows this
common technique.

Various strategies have been used in similar projects in
the past to combine the information from a gyroscope and
an accelerometer. A Kalman filter is also used in [1] to arrive
at the best estimate for the angle from the available signals.

For control of forward velocity of full-sized balancing
vehicles, several techniques have been tested. Among them
are setting a weighting on the control in the LQR and
designing the controller in such a way that it is unable to
eliminate the steady-state error caused by the rider leaning on
the platform, forcing the controller to apply constant power
to the motors which results in forward motion [1]. The robot
in this paper does not have the benefit of a rider providing
a constant input disturbance to control forward motion, but
some similar technique of using a constant steady-state error
to motivate forward motion is being considered.

Data gathering via Bluetooth has been used in similar
projects in order to validate system models [2]. The strategies
used to compare simulation results with real system perfor-
mance will be explored as this project advances.

III. REQUIREMENTS AND SPECIFICATIONS

The system requirements are divided into two categories,
depending on whether they are considered needed or desired.
The robot need to:
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• stabilize in an upright position
• reject disturbances, such as gentle pushes
• display information useful for debugging

It is desired that the robot has:
• modes for homing and free drive, i.e. a mode for

returning to the initial position and a mode for not caring
about which position the robot ends up in.

IV. DESIGN

This section presents the robot’s software- and hardware
architecture.

A. Software architecture

The software architecture is divided into a digital control
system, a Human Machine Interface (HMI) and an initial-
ization module, shown in Fig. 1. A sampling module reads
sensory information at 250 Hz. The sampled data is used by
a state estimator that produces state estimates at the same
rate. A LQR controller generates an input signal to the DC-
motors by using state feedback.

Sampling Module

Output:

Gyro, acc. & encoder  @ 250 Hz

Digital Control System

State Estimation Module

Output:

State estimates @ 250 Hz

LQR Controller Module

Output:

Voltages to DC-motors @ 250 Hz

Display Module

Sends relevant signals to the

NXT display @ 20 Hz

HMI

Buttons Module

User interactions start and stop 

the robot control algorithm

Calibration Routine

Output: Calculated value of gyro

o!set. Runs 4 seconds.

Initialization

Initialize Variables

Get a system clock reference 

and init relevant variables.

Fig. 1. A digital control system is responsible for the keeping the robot in
an upright position. The angle and angular velocity is sampled at 250 Hz.
A kalman filter estimated the system’s states, which are used by an LQR
controller to achieve a state feedback. A HMI displays relevant data and
responds to user input.

B. Hardware architecture

An illustration of the hardware used in this work is
depicted in Fig. 2. Two DC-motors are rigidly attached to
a NXT microprocessor unit. Gyro- and an accelerometer
sensors are mounted on the NXT unit, between the wheels
connected to the DC-motors. The motors have encoders built
in, that enables readings of the position of the robot.

NXT

Microprocessor

Gyro &

Accelerometer

Wheels

Motor +

Encoder

Motor +

Encoder

Fig. 2. Hardware architecture of self-balancing robot. Three types sensors
are used; encoders, a gyro and an accelerometer.

V. SYSTEM MODEL

This section describes modelling and simulation of the
self-balancing two-wheeled robot.

A. Electrical sub system

The robot’s DC-motors can be modelled separately by the
electric circuit in Fig. 3, where R and L represent resistive
and inductive parameters of the stator windings respectively.
u represents the input voltage controlling the motors. The
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+
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–

–

Fig. 3. The electric DC-motors are modelled separately. The winding of a
motor is lumped to a resistive- (R) and an inductive (L) part. In addition, a
back EMF ue models an induced voltage that is proportional to the angular
velocity generated by the motors.

back EMF ue is assumed proportional, to the angular velocity
θ̇w, by a constant Ke as

ue = Ke(θ̇w − θ̇b)

The torque T1 produced by one of the DC-motors is assumed
to be proportional to the winding current i, by a constant Km.

T1 = Kmi (1)

Applying KVL yields the following equation for the electric
system in Fig. 3.

u = Ri+L
di
dt

+ue (2)

B. Connecting the mechanical sub system

The mechanical system can be divided into sub systems
of the wheels and the upper body (pendulum), as illustrated
in Fig. 4 and Fig. 5 respectively.

Since the mechanical system dynamics is considered slow,
compared to the electrical system, the current transients can
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Fig. 4. An free body diagram of the torque and forces applied to one of
the robot’s wheels, with radius r and mass Mw.

Fig. 5. The robot’s upper body can be modelled by an inverted pendulum
with length 2L and mass Mb.

be omitted. Hence, the derivative term in Eq. 2 goes to zero.
Solving for i yields

i =
u−ue

R
=

u
R
− Ke

R
(θ̇w − θ̇b).

Putting this into Eq. 1 gives an expression for the torque
applied by one of the DC-motors

T1 =
Km

R
u− KeKm

R
(θ̇w − θ̇b). (3)

The term (θ̇w − θ̇b) is used in calculation of the back emf
to give the relative rotation speed between the rotor and the
stator in the motor.

The basic equations of motion for the robot’s wheels are
given by

Jwθ̈w = T1 − rFs −Tf , (4a)
Mwẍw = Fs −F1. (4b)

Jw includes the inertia for the wheel, axle, and motor. The
term Fs is the static friction force due to contact between the
wheels and the surface the robot drives on. Tf is a friction
torque, proportional to the angular velocity. Substituting T1
in Eq. 3 into Eq. 4a returns the value of the unknown static
friction force

Fs =−Jw

r
θ̈w −

Tf

r
− KeKm

rR
(θ̇w − θ̇b)+

Km

rR
u. (5)

It is assumed that there is no slipping in the wheels, hence
the rotation of the wheels can be expressed in terms of their
displacement (and likewise for other derivatives) as

ẍw = θ̈wr.

The equations of motion for the robot’s upper body, in the
horizontal direction, can be written as

Mbẍb = (F1 +F2)−MbLθ̈b cosθb, (6)

where the last term is the tangential force’s horizontal com-
ponent. For the sake of generality, the subscript 1 represents
the right wheel and the subscript 2 represents the left wheel.

The equation for motion about the center of mass is given
by

Jbθ̈b =

−(F1 +F2)Lcosθb − (T1+T2)+2FpLsinθb +2Tf
(7)

The terms are multiplied by 2 here because it is assumed that
the reaction force and friction force are the same for each
wheel. Motion perpendicular to the pendulum is given by

Mbẍb cosθb =

(F1 +F2)cosθb −MbLθ̈b−2Fp sinθb +Mbgsinθ .
(8)

The wheel and body systems are linked together by finding
an expression for the unknown reaction forces (F1+F2) from
Eq. 6, 5 and 4b, under the assumption that any difference in
rotational velocity between the two wheels is negligible

Mbẍb +MbLθ̈b cosθb =

−2(Mw +
Jw

r2 )ẍw − 2KeKm

r2R
ẋw +

2KeKm

rR
θ̇b +

2Km

rR
u−

2Tf

r

Substituting Eq. 7 into Eq. 8 yields an expression for
translation of the pendulum in terms of its rotation

(Jb +MbL2)θ̈b =

MbgLsinθ −MbẍbLcosθb +2Tf − (T1 +T2),

where T1 and T2 is given by Eq. 3 and

Tf = b(θ̇ − ẋ
r
).

Note that this is a simplified form and omits the centripetal
force of the pendulum entirely (it is considered to be very
small). Further simplification follows when ẍb is taken to be
equal to ẍw as a single variable ẍ. The system is linearized
and put on state-space by introducing small angle approxi-
mations, i.e. sinθ = θ and cosθ = 1. The linearized system
dynamics can be written in terms of the system states and
the input as

ξ̇ = Aξ +Bu,

y =Cξ +Du,

where
ξ =

[
x ẋ θ θ̇

]T
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is the state vector, y is the system’s output and u is the DC-
motors’ voltage input. The A- and B matrices are given by

A =


0 1 0 0
0 α β −rα

0 0 0 1
0 γ δ −rγ


B =

[
0 αε 0 γε

]T
where

α =
2(Rb−KeKm)

(
MbL2 +MbrL+ Jb

)
R(2(JbJw + JwL2Mb + JbMwr2 +L2MbMwr2)+ JbMbr2)

β =
−L2Mb

2gr2

Jb (2Jw +Mbr2 +2Mwr2)+2JwL2Mb +2L2MbMwr2

γ =
−2(Rb−KeKm)

(
2Jw +Mbr2 +2Mwr2 +LMbr

)
Rr (2(JbJw + JwL2Mb + JbMwr2 +L2MbMwr2)+ JbMbr2)

δ =
LMbg

(
2Jw +Mbr2 +2Mwr2

)
2JbJw +2JwL2Mb + JbMbr2 +2JbMwr2 +2L2MbMwr2

ε =
Kmr

Rb−KeKm

C. Simulation and control

As a first approach, realistic parameter values were se-
lected. The parameters used for the DC-motors were found
in [7]. Table I shows all the parameters used. They give the
following system matrices

A =


0 1 0 0
0 −126.3 −12.8 5.1
0 0 0 1
0 1446.9 213.6 −57.9


B =

[
0 10.7 0 −122.6

]T
D =

[
0 0

]T
By examining the eigenvalues of the A matrix, it is clear
that the linearized system has unstable poles. However, the
system is stabilizable since the controllability matrix

Wc =
[
B AB · · · An−1B

]
has full rank. The gyro- and accelerometer sensors are used
to measure θ and θ̇ respectively, hence the C matrix is given
by

C =

[
0 0 1 0
0 0 0 1

]
As a result, the observability matrix given by

Wo =
[
C CA · · · CAn−1

]T
,

where n is the order of the A matrix, has rank < n. This im-
plies that the final state-space model is not fully observable.
However, no state is dependant upon the unobservable state
x. Thus, a minimum realization of the system can be used to

reduce it to a third-order, fully controllable- and observable
system. A Kalman filter, shown in Fig. 6, is used to produce
an estimate ξ̂ of the states. The Kalman gain is chosen to
be

L =

0.0290 −0.9072
0.1395 1.9804
0.9902 29.1690

 .
Band-limited white noise is added to the measured signal

Fig. 6. A Simulink model of robot dynamics (image), sensors (blue) and
LQG control system (green and purple).

to model the sensors. In addition, a constant bias is added to
the angular velocity measured, to model the drifting property
of the gyro sensor.

A Linear Quadratic Regulator (LQR) is used for optimal
state feedback control, Fig. 7 shows how the system’s states
are brought to zero from an initial state

ξ0 =
[
0 0 .25 −.15

]T
.
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It is clear that the system can reject disturbances (modelled
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Fig. 7. The controller set-up used manages to regulate the system’s
observable states to zero from an initial perturbation.

by an initial perturbation). Figure 8 shows the state estimate
ξ̂ , which converges to the true (observable) states from an
initial guess of

ξ̂0 =
[
0 0 0

]T
.

Note that the position state estimate is omitted since it is not
included in the minimal realization.
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Fig. 8. The LQE algorithm produces estimates of the system’s observable
states. The estimates converge to the true states, from an initial guess of all
states being equal to zero.

It is of interest to validate the LQG controller further, by
connecting it to the non-linear model of the system dynamics.
Figure 9 shows a comparison between a simulation of the
linearized (red) system and the non-linear system (black). It
is clear that there are some minor differences between the
systems’ responses, they are however considered small.

VI. IMPLEMENTATION

This section describes the control system implementation
using Simulink and c-programming.

A. Simulink

The simulink model from which code was generated is
setup as in Fig. 10. It consists of a block gathering sensor
data, a small calibration routine, a state reconstruction block,
a control block, and an actuator/output block.
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Fig. 9. A comparison between the LQG controller acting on a non-linear-
(black) and a linearized (red) model of the robot. The differences between
the two systems’ states are considered small.

Fig. 10. The Simulink model (top level) used for control of the self-
balancing robot.

1) Sensors: The first block in the Simulink model consists
of the sensor input data.

The best performance was observed when the internal
timer, accelerometer, gyroscope, battery level indicator, and
motor encoders were used as sensor inputs. Previous attempts
successfully balanced the robot with only gyroscope and en-
coder combinations, but the stability of the system over time
was compromised by gyroscope drift. It was not possible to
develop a control system that worked at different levels of
battery charge without feedback from the battery indicator.

The sampling frequency used (which was the same fre-
quency used for updating the controller) was 250 Hz. The
sampling frequency was chosen based on the rise time of
the closed-loop system with a continuous time controller in
simulation, which was observed to be .005 s for the fastest
output signal. Based on the relationship

bandwidth =
0.35

risetime
A bandwidth for the closed-loop system is calculated to be
about 70 Hz. From the Nyquist criteria, the sampling rate
should be at least 140 Hz. It was observed that anything
below 200 Hz struggled with disturbance rejection and was
only marginally stable. The final sampling rate of 250 Hz
was determined through testing as the slowest sampling
frequency which would give suitably robust performance.
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The difference between this and the calculated 140 Hz rate
is believed to be an error introduced by inaccuracy of model
parameters or by linearization of the plant.

2) State reconstruction: It was found that the states could
be adequately reconstructed from sensor data without the
need of model-based state estimation, as shown in Fig. 11.

Fig. 11. State Reconstruction Block. The four system states are derived
from sensor output without using model-based state estimation.

To determine the angular velocity, the signal from gyro-
scope was used directly after filtration and correction for
drift. To reconstruct the angle from this, the gyroscope signal
was integrated and combined with an estimate of the angle
from the accelerometer using a complementary filter. The
formation of the complementary filter is given in Fig. 12.

Fig. 12. A Complementary Filter Implemented in Simulink. It has the
effect of passing the accelerometer signal through a low-pass filter, passing
the gyroscope signal through a high pass filter, and summing the signals.

The estimate of the angle from the accelerometer was
taken from the function

θ = arctan2

(
accelz
accelx

)
,

where accelz and accelx are the raw A/DC output of the
accelerometer along the z- and x-axes. The arctan2 function
takes the sign of its two inputs into account individually to
return the appropriate quadrant of the angle. No problems
were experienced when using the trigonometric function in
the calculation.

The accelerometer angle signal was multiplied by α , a fil-
ter constant. The lower the value of α , the less weighting was
put on the signal from the accelerometer. With no weighting
on the accelerometer (α = 0), the angle estimate suffered
from gyroscope drift and was reliant upon an initial angle of
zero at startup. With larger values of α , the acceleration of
the robot began to interfere with the angle estimates and led
to instability.

Through trial and error, a value of α = .005 was found
to correct the angle estimates’ drifting problem without
introducing any errors due to acceleration. Figure 13 shows
the difference in angle recorded by the robot while balancing
around an unstable equilibrium point for values of α = .005
and α = 0.
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Fig. 13. Using the accelerometer to remove the bias in the gyroscope’s
estimate of the current angle as a result of non-zero starting conditions and
measurement drift.

The signals from the motor encoders and battery level in-
dicator were passed through a low-pass filter. The derivative
of the wheel position signal from the encoders was used to
determine the wheel speed.

Reconstructing proper states was crucial to the success
of the control algorithm. Numerous attempts at filtration of
the gyroscope signal were made. Ultimately, a method of
determining an estimate of the angle from the gyroscope
signal was found in [6]. By passing the gyroscope signal
through a low-pass filter to determine the offset continuously
during operation a stable angular velocity estimate could be
made which was sufficient for both angular velocity and
angular position states.

Nevertheless, in addition to the complementary filter,
model-based state estimation was approached by using a
Kalman filter. Figure 14 and 15 shows the estimates pro-
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Fig. 14. Tilt angle state generated by Kalman- and complementary filter
respectively.

duced by the Kalman filter, compared to results achieved
using the complementary filter. It is clear that the filters
gives similar results and that the Kalman filter produces
states estimates with more “spikes”. Note that the Kalman
implementation does not use as many sensors as the compli-
mentary; it does not use the encoders to produce its estimates.
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Fig. 15. Linear velocity state generated by Kalman- and complementary
filter respectively. Note that the complementary filter uses one extra sensor
(encoder) to achieve its reconstruction.

With this in mind, the linear velocity state estimate in Fig. 15
looks quite good.

The states given by the complementary filter showed to
be more useful when implementing a control algorithm.
It is hence used throughout the remaining sections of this
report. However, the Kalman filter could possibly be tuned,
by adjusting the Kalman gain, to give a better result.

3) Controller: The control algorithm used was an LQR
based on the state information provided from the sensors.
Additionally, integral states on position and angular position
were calculated, resulting in a new state space

Ā =

 A 04x1 04x1
C1 0 0
C2 0 0


B̄ =

[
B 0 0

]T
,

where the sub-matrices are

C1 =
[
1 0 0 0

]
C2 =

[
0 0 1 0

]
Adding the integral states on both position and angle allows
offset-free control of the robot. With proper weighting on the
position state and the integral of position state the robot can
return to its original position in response to a disturbance.
With weighting only on angle and integral of the angle, the
robot will balance itself without regard to the final position
it comes to rest in.

The integral states are passed from the State Reconstruc-
tion block to the Controller block, which is shown in Fig. 16.
In the Controller block, the battery voltage is used as a
divider to determine the required PWM signal. The input
returned by the LQR is the voltage which should be applied
to the motors; the battery voltage level is what voltage will be
applied at 100% duty cycle for the PWM signal. Including
the battery voltage level here guarantees that the outgoing
PWM signal corresponds to the same voltage target provided
by the LQR, regardless of charge level (up to saturation, of
course).

Two control schemes were developed. The first would
stabilize the robot at its original position. This was ac-
complished by putting larger penalties on the position and
integral of the position states, as shown in the follow weight

Fig. 16. The control algorithm for the self-balancing robot. Full-state
feedback is used on all four states as well as on the integral of the position
and tilt angle. To save battery life and prevent damage, the controller is
setup to stop once the robot tilts beyond 40 degrees, a point at which it is
unable to stabilize itself. Note that this figure contains a block to switch
between two different controllers.

matrix

Q1 =


6 ·104 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 4 ·102 0
0 0 0 0 0 1


R = 200

The resulting state feedback gains are

k f =
[
−18.5 −33.0 −36.7 −3.8

]
ki =

[
−1.4 0.0

]
The second scheme allowed the robot to balance itself
without concern as to where it ended up. If pushed it would
roll forward to stabilize itself and remain stationary wherever
it came to a stop. Penalties were put on the angle and
integration of the angle only

Q2 =


10−3 0 0 0 0 0

0 10 0 0 0 0
0 0 6 ·104 0 0 0
0 0 0 10 0 0
0 0 0 0 10−3 0
0 0 0 0 0 4 ·102


k f =

[
−0.3 −28.5 −36.9 −3.3

]
ki =

[
0.0 0.1

]
It is observed that the gains applied to the horizontal velocity,
angular velocity, and angle are approximately the same in
both cases. This gain is a function of both the Q matrix
weighting as well as the linearized model of the system,
which establishes the relationship between the states. That
the control algorithm in both cases results in what is expected
is taken as evidence that the linear model derived earlier is
correct.

4) Actuators: The final block in the Simulink imple-
mentation delivers the PWM signal to the DC motors. The
current setup drives the motors with the same voltage input.
Modifications to allow turning and control of steering would
instead provide different signals to the motors, under the
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condition that the average driving voltage between the two
motors be sufficient to stabilize the system.

The DC motors are highly nonlinear components. They
feature a significant backlash as well as a very large dead-
zone. Attempts were made to account for the deadzone in
the control algorithm by increasing the PWM duty cycle by
45% in the appropriate direction, but this resulted in very
shaky behavior and led to frequent stalling when the robot
approached an equilibrium point. With suitable controller
gains, it was not necessary to account for the motor deadzone
to get adequate controller performance.

B. C-programming

The Simulink controller implementation, in Section VI-
A, was reproduced by programming the robot in C code.
The final C implementation includes state estimation, using
a complimentary filter, and control using LQR state feed-
back. No major difference in performance was found when
running a qualitative test, comparing the C- and Simulink
implementations. The robot was able to stabilize itself and
managed to reject disturbances such as gentle pushes.

The implementation is found in the Appendix. Three
tasks are used in the implementation. A background task
is responsible for updating the NXT display with variables
used during debugging, the background task is assigned
a low priority. A medium priority task, responsible for
initialization, calibration and control, is run at 250 Hz. A
third task, also run at 250 Hz, reads sensor values and updates
the states using a complementary filter.

VII. VALIDATION

Figure 17 shows the results of two runs, using different
Q-matrices. The system is exposed to perturbations, applied
as gentle pushes, in both runs. It is clear that a state feedback
controller, with higher penalties on the position state, makes
the robot want to go back to where it started. In addition,
it is also clear that both controllers manage to reject the
disturbances to stay in an upright position.

VIII. DISCUSSION

In the initial part of the project a number of require-
ments were formulated for the robot. The requirements were
categorized into either a needed requirement or a desired
requirement, where the second category was to be done
depending on time and success of the needed requirements.

It was defined that the robot needed to be able to stand in
upright position and reject disturbances. As seen in previous
section both these requirements were fulfilled.

The sensors were one of the most difficult part of the
project to get to function properly and also one of the
most important. However, when the filter was tuned properly,
the control scheme worked well. Since the complementary
filter worked well the more complex Kalman filter was not
implemented as initially planned.

Another critical factor in the control scheme was the
sampling frequency. With a sampling frequency of 100
Hz, no suitable controller could be developed. When the
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Fig. 17. Logged results of the angle- and position states, together with the
corresponding input signal, for two different Q-matrices. The results show
that using a Q-matrix with a low penalty (Q2) on the position state makes
the robot not caring about returning to its initial position. The data’s low
resolution is due to the slow and unreliable Bluetooth connection.

sampling frequency of 250 Hz was decided upon, stabilizing
the system became very easy using the LQR. At 200 Hz, the
system was marginally stable at best.

The other planned features, such as steering and speed
control, have been deemed to be unimportant relative to
stabilization and have not yet been implemented.
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APPENDIX
C CODE IMPLEMENTATION

// nxt_config.h
#ifndef _NXT_CONFIG_H_
#define _NXT_CONFIG_H_

#include "ecrobot_interface.h"

/* NXT motor port configuration */
#define PORT_MOTOR_R NXT_PORT_B
#define PORT_MOTOR_L NXT_PORT_C

/* ENCODER DEF */
#define PORT_ENC_R NXT_PORT_B
#define PORT_ENC_L NXT_PORT_C

/* NXT sensor port configuration */
#define PORT_ACC NXT_PORT_S3
#define PORT_GYRO NXT_PORT_S2
/* NXT Bluetooth configuration */
#define BT_PASS_KEY "1234"
#endif

// main.c
#include "kernel.h"
#include "kernel_id.h"
#include "ecrobot_interface.h"
#include "nxt_config.h"
#include <math.h>
#define PI 3.14159265

// mode of the robot
typedef enum {
INIT_MODE, // init
CAL_MODE, // calibrate gyro
CONTROL_MODE // control system

} MODE;

MODE nxtway_gs_mode = INIT_MODE;

// states
double theta = 0;
double thetadot = 0;
double x[] = {0.0, 0.0};
double xFiltered[] = {0.0, 0.0};
double xdot = 0;
double angle_acc = 0;

// variables
double batteryFiltered[] = {0.0, 0.0};
double batteryDen;
double gyroOffsetFiltered[] = {0.0, 0.0};

// coefficients
static double a_b = .8;
static double a_gd = 0.999;
static double r = .04;
static U32 cal_start_time = 0;

/* hook */
void ecrobot_device_terminate(void) {
ecrobot_set_motor_speed(NXT_PORT_B, 0);
ecrobot_set_motor_speed(NXT_PORT_C, 0);
ecrobot_term_bt_connection();

}

/* hook */
void ecrobot_device_initialize(void) {

ecrobot_init_bt_slave(BT_PASS_KEY);
}

DeclareCounter(SysTimerCnt);

void user_1ms_isr_type2(void) {
/* Activate periodical Tasks */
(void)SignalCounter(SysTimerCnt);

}

/* 4 ms: calibration and control*/
TASK(OSEK_Task_ts1) {
S8 pwm_l;
S8 pwm_r;

double stateFeedback;
double tmp;

switch(nxtway_gs_mode){
case(INIT_MODE):
pwm_l = 0;
pwm_r = 0;
nxt_motor_set_count(PORT_MOTOR_L, 0);
nxt_motor_set_count(PORT_MOTOR_R, 0);
cal_start_time = ecrobot_get_systick_ms();
nxtway_gs_mode = CAL_MODE;
break;

case(CAL_MODE):
// Calibrate the gyro offset
tmp = gyroOffsetFiltered[0];
gyroOffsetFiltered[0] = a_b*gyroOffsetFiltered[1] +

(1.0-a_b) * ((double)ecrobot_get_gyro_sensor(
PORT_GYRO));

gyroOffsetFiltered[1] = tmp;

// count to 4k ms
if ((ecrobot_get_systick_ms() - cal_start_time) >=

4000U) {
// beep
ecrobot_sound_tone(440U, 500U, 30U); /* beep a

tone */
nxtway_gs_mode = CONTROL_MODE;

}
break;

case(CONTROL_MODE):
// LQR CONTROLLER
stateFeedback = (18.5001*x[0] + 33.0438*xdot +

36.7429*theta + 3.7731*thetadot)*100.0/
batteryDen;

// saturation
if (fabs(stateFeedback) > 100.0) {
stateFeedback = stateFeedback/fabs(stateFeedback)

*100.0;
}

// set motor outputs
pwm_l = stateFeedback;
pwm_r = stateFeedback;

nxt_motor_set_speed(PORT_MOTOR_L, pwm_l, 1);
nxt_motor_set_speed(PORT_MOTOR_R, pwm_r, 1);
break;

default:
// unexpected mode. bad robot
nxt_motor_set_speed(PORT_MOTOR_L, 0, 1);
nxt_motor_set_speed(PORT_MOTOR_R, 0, 1);
break;

}

TerminateTask();
}

/* 4 ms: sample and estimate */
TASK(OSEK_Task_ts2) {
// Battery denominator calculation for charge

compensation
double tmpBat = batteryFiltered[0];
batteryFiltered[0] = a_b * batteryFiltered[1] + (1.0-a_b

) * ((double)ecrobot_get_battery_voltage());
batteryFiltered[1] = tmpBat;
batteryDen = 0.001089*batteryFiltered[0] - .625;

if(nxtway_gs_mode == CONTROL_MODE) {
// Read encoders
int enc_r = nxt_motor_get_count(PORT_ENC_R);
int enc_l = nxt_motor_get_count(PORT_ENC_L);

// Read gyro and accel.
double gyroRaw = ecrobot_get_gyro_sensor(PORT_GYRO);
S16 accValues[3];
ecrobot_get_accel_sensor(PORT_ACC, accValues);

// Continue to filter offset with slower filter
double tmp = gyroOffsetFiltered[0];
gyroOffsetFiltered[0] = a_gd*gyroOffsetFiltered[1] +

(1.0-a_gd) * gyroRaw;
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gyroOffsetFiltered[1] = tmp;

// Complimentary filter
const double Ts = 0.004;
const double alpha = .005;
angle_acc = atan2(accValues[2],accValues[0])+4.4*PI

/180.0; // in rad
thetadot = (gyroRaw - gyroOffsetFiltered[0])*PI/180.0;

// in rad
theta = (1.0-alpha)*(theta+thetadot*Ts)+(alpha*

angle_acc); // -> in rad

// Position states
x[1] = x[0]; // remember last position for

differentiation
x[0] = ((double)(enc_r + enc_l))*(PI*r)/(180.0*2.0) +

theta*r;

xFiltered[1] = xFiltered[0];
xFiltered[0] = (1-a_b)*x[0] + xFiltered[0]*a_b;

xdot = (xFiltered[0]-xFiltered[1])/Ts;
}
TerminateTask();

}

// Background task
TASK(OSEK_Task_Background) {
while(1){
// Show relevant signals on display (used for

debugging)
display_clear(0);
int i = 0;

display_goto_xy(0, i++);
display_int((int)x[0]*180.0/PI, 6);
display_goto_xy(0, i++);
display_int((int)xdot*180.0/PI, 6);
display_goto_xy(0, i++);
display_int((int)gyroOffsetFiltered[0], 6);
display_goto_xy(0, i++);
display_int(angle_acc*180.0/PI, 6);
display_goto_xy(0, i++);
display_int(theta*180.0/PI, 6);

display_update();
systick_wait_ms(50); /* 50msec wait */

}
}

// main.oil : task set-up

#include "implementation.oil"

CPU ATMEL_AT91SAM7S256 {
OS LEJOS_OSEK {
STATUS = EXTENDED;
STARTUPHOOK = FALSE;
SHUTDOWNHOOK = FALSE;
PRETASKHOOK = FALSE;
POSTTASKHOOK = FALSE;
USEGETSERVICEID = FALSE;
USEPARAMETERACCESS = FALSE;
USERESSCHEDULER = FALSE;

};

/* Definition of application mode */
APPMODE appmode1{};

/* Definitions of a periodical task: OSEK_Task_ts1 */
TASK OSEK_Task_ts1 {
AUTOSTART = FALSE;
PRIORITY = 2;
ACTIVATION = 1;
SCHEDULE = FULL;
STACKSIZE = 512; /* bytes */

};

ALARM OSEK_Alarm_task_ts1 {
COUNTER = SysTimerCnt;
ACTION = ACTIVATETASK
{

TASK = OSEK_Task_ts1;
};

AUTOSTART = TRUE
{
APPMODE = appmode1;
ALARMTIME = 1;
CYCLETIME = 4;

};
};

/* Definitions of a periodical task: OSEK_Task_ts2 */
TASK OSEK_Task_ts2 {
AUTOSTART = FALSE;
PRIORITY = 3;
ACTIVATION = 1;
SCHEDULE = FULL;
STACKSIZE = 512; /* bytes */

};

ALARM OSEK_Alarm_task_ts2 {
COUNTER = SysTimerCnt;
ACTION = ACTIVATETASK
{
TASK = OSEK_Task_ts2;

};

AUTOSTART = TRUE
{
APPMODE = appmode1;
ALARMTIME = 1;
CYCLETIME = 4;

};
};

/* Definition of background task: OSEK_Task_Background

*/
TASK OSEK_Task_Background {
AUTOSTART = TRUE
{
APPMODE = appmode1;

};

PRIORITY = 1; /* lowest priority */
ACTIVATION = 1;
SCHEDULE = FULL;
STACKSIZE = 512; /* bytes */

};

/* Definition of OSEK Alarm counter: SysTimerCnt */
COUNTER SysTimerCnt {
MINCYCLE = 1;
MAXALLOWEDVALUE = 10000;
TICKSPERBASE = 1;

};
};
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