
 1

Improving the throughput at Lightning Inc.

Simulation of Production Systems

MPR 271 - 2013

Sebastian Nilsson

Pontus Wikholm

 2

Abstract

The project improves a street light production so that the throughput of the factory

increases. AutoMod was used as simulation software and mainly AutoStat was used to analyse

the model. The simulation methology by Jerry Banks and the theory of constraints are the two

main methods used in the project. The result was an increase of the throughput by 33%, reduced

WIP and and increase of profit per week by 66%.

 3

Table of Contents

1 Introduction: ... 4

2 Methodology ... 4

2.1 Step 1-2. Problem formulation and setting objectives .. 4

2.2 Step 3-4. Conceptual model building ... 4

2.3 Step 5-7. Coding, verification and validation ... 5

2.4 Step 8-10. Experimental design, production runs and analysis ... 5

2.5 Step 11. Documentation ... 6

2.6 Step 12. Implementation .. 6

3 Project realization ... 7

3.1 Work description (including analysis of bottlenecks) ... 7

3.2 Experiment design ... 7

3.3 Analysis of bottlenecks ... 9

3.4 Analysis of warm-up time ..10

4 Project results ..10

4.1 Improvement step 1 ..10

4.2 Improvement step 2 ..10

4.3 Extra task A: Order point optimization ...11

4.4 Extra task B: Energy saving strategy ..12

4.5 Extra task C: Middle storage as supermarket ... 13

5 Discussion ..14

5.1 Discussion of the results from improvement step 2 ...14

5.2 No night shift ...15

5.3 Bottleneck indication ..15

5.4 Constraints ...16

6 Conclusion ...16

7 Bibliography ..18

9 Appendices ..19

9.1 Appendix 1: Model logic code ..19

9.3 Appendix 2: Visualization of the final system ... 38

9.5 Appendix 3: Flow chart ... 39

 4

1 Introduction:

Lightning Inc has a new production line that does not perform as expected. The purpose of

this report is to serve as decision support for future investments to increase throughput and by

doing so increasing profit. The investigation will be done through simulations in Automod.

The greatest delimitations in this work are only focusing on increasing profit through

increased throughput. Measures to decrease buffers, selling equipment, reducing waste or

reducing energy consumption to increase profit is not taken into account. Neither are any

sustainability aspects treated, except for the extra task that limits waste and as a consequence

results in an environmental gain.

2 Methodology

The project methodology is based on Banks model

(Steps in a simulation study, (Banks, 2000)) and will also

serve as a plan for experimentation.

2.1 Step 1-2. Problem formulation and setting

objectives

The problem formulation is based on the project

description from Examination project Simulation of

Production Systems, MPR 271 - 2013. The main objective is

to increase the throughput. Secondary objectives are to

implement pull-flow, power savings on machines and order

point optimization.

2.2 Step 3-4. Conceptual model building

To achieve a good overall view of the system and avoid

deadlocks while coding we decided to express the base

model in a big flow chart (see Appendix 3: Flow chart).

This proved to generally improve the quality of our base

model since it made it easier to collaboratively code the

model simultaneously from different computers.

Figure 1: Jerry Bank's methodology

(Banks, 2000)

 5

2.3 Step 5-7. Coding, verification and validation

Coding the model based on the conceptual model expressed in flowcharts is a straightforward

process. A good approach is to after each new process implementation run the simulation and

increase complexity in steps. For example we did not implement breakdown routines until the

product flow through the factory was working well without deadlocks. The verification consists of

comparing our code to the conceptual model. When satisfactory behaviour is reached a validation

of the whole simulation is necessary. This is to make sure the simulated production flow behaves

sufficiently close to the project description.

2.4 Step 8-10. Experimental design, production runs and analysis

The ultimate goal of the experimental design was to maximize the throughput of the system.

To reach this goal Theory of constraints is used (Goldratt, 1986) which is described below.

1. Apply Theory of constraints

a. Identify the system’s constraint(s). See Methods for identifying constraints

below.

b. Decide how to exploit the system’s constraint(s). (How to get the most out of

the constraint).

c. Subordinate other resources to the constraint(s). (Align the whole system or

organization to support the decision made above).

d. Elevate the system’s constraint(s). Make investments to further increase the

constraint’s capacity.

e. If in any of the previous steps a constraint is broken, go back to step a.

This is rather straightforward with the exception of step a. There are many ways of

identifying the systems constraint as can be seen in the section below.

2.4.1 Methods for identifying constraints

Four methods are considered (S. Chick, 2003):

1. Utilization method. Highest utilization indicates a constraint (also called bottleneck).

Greatest disadvantage is the uncertainty of the method and it lacks the ability to

identify secondary bottlenecks.

2. Waiting time method. High waiting times in queue and length of queue before a

resource indicate the resource being a bottleneck. Also empty buffers after a resource

indicate being a bottleneck. Greatest disadvantage is that the queues need to be

 6

infinite (which they are not in our model) to fully gain the capabilities of this

method.

3. Shifting bottleneck method. A resource is either in active state (limiting flow) or

passive state (not limiting flow). The resources with the longest uninterrupted active

period indicate being a bottleneck. This method is superior to the other mentioned

methods but will not be used because of limitations in the Automod software (see

discussion in 5.3 Bottleneck indication).

4. Average active duration method (Roser, 2001). A resource is either in active or

passive state just as in the shifting bottleneck method. The resources with the highest

active percentage indicate being a bottleneck. This method is very similar to the

utilization method but extends to include setup time and downtime in the active

state compared to the utilization method that only focuses on the time the machine is

processing.

5. Experimental Bottleneck Detection is the most time consuming but also the most

accurate method. It is simply to run simulations for different scenarios and compare

the throughput. The scenario that gives the most improved result corresponds to

being a (previous) bottleneck.

In this project a combination of method one, four and five is used. For the experimental

bottleneck detection we use Autostat optimization method that will vary multiple variables to

find an optimal throughput. Each investment is represented as a variable and no permanent

changes in the code are made to implement an investment. The Autostat optimization function

will present a couple of solutions where the throughput is maximized and it is up to us to chose

one of them. The other bottleneck identification methods are used to check if the answer from

Autostat is reasonable or not.

2.5 Step 11. Documentation

Documentation mainly consists of comparisons of investments and their corresponding result

and recommendations for future investments; in essence, this report.

2.6 Step 12. Implementation

Implementation is out of the scope of this project but we have presented our results and

proposed solutions in presentation form.

 7

3 Project realization

3.1 Work description (including analysis of bottlenecks)

3.1.1 Base model

The base model is a simulation model representing the factory’s current behaviour. Before

any improvements of the production system were made the throughput of the factory was 780

products per week. This answers well to the current demand of 600 lights per week. The graphic

representation of the system can be seen in Figure 9 and Figure 10 (in 9.3 Appendix 2:

Visualization of the final system). The products are coloured according to paint, dry-status and

galvanize to aid debugging. They are also given different lengths in the beginning of the

production. Discussions about assumptions are in 5 Discussion.

3.1.2 Improvements triggered by variables

Instead of testing investments by commentating out different sections of code, variables that

toggle investments are created. If for example our variable V_fast_drying_paint_investment is

set to 1 the code block that implements fast drying paint will be used instead of the original code

for drying time. The reason for doing this is to make use of Autostat optimize function (also see

2.4.1 Methods for identifying constraints).

3.2 Experiment design

Experimentation on how to increase the throughput of the model was done in two steps. The

first step maximize the profit while keeping WIP low with an investment of maximum 100 000

€. In the second step the whole budget of 300 000 € was used and the aim was to increase

throughput as much as possible.

3.2.1 Step 1

The optimization run gives the results of the 30 highest profits per week depending on which

improvements that are used. All of the 30 runs have a result of between 13000 and 18550 in

profit per week. The sets of investments vary slightly between the 30 highest throughputs but

most investments are either used or not used in the top 30. This is a list of the best investment

setup for step 1.

1. Buy two extra fixtures to use at the assembly line.

2. Start using fast drying paint.

3. Improve the cutting and drilling equipment to increase the MTTF for that workstation.

4. Train the operators to reduce the MTTR for the cutting equipment.

 8

5. Train the operators to reduce the MTTR for the cutting & drilling equipment.

6. Increase the speed of the conveyors in the assembly area.

7. Train the middle storage operator to inspect painting to reduce transport time for rework.

8. Invest in the fans that dry the galvanize and paint.

9. Train a worker on the assembly line station one to decrease his/her cycle time.

These investments increased the profit from the base models 11505 € to 18550 € per week.

The cost for these investments are in total 92 000 €.

3.2.2 Step 2

The top 30 runs of step 2 have a result of between 1050 and 1080 in throughput per week.

The sets of investments vary slightly between the 30 highest throughputs but most investments

are either used or not used in the top 30. The investments that proved to be most important to

maximize the output was:

1. Increase quality in cutters to eliminate the burr removal process.

2. Buy four extra fixtures to use at the assembly line.

3. Start using fast drying paint.

4. Train the operators to reduce the MTTR for the cutting equipment.

5. Train the operators to reduce the MTTR for the cutting & drilling equipment.

6. Train the operators to reduce the MTTR for the galvanizing baths.

7. Buy bigger packing boxes to replace the smaller ones.

8. Increase the speed of the conveyors in the assembly area.

9. Train the packing operator within painting to reduce transport time for painting rework.

10. Improve the cutting and drilling equipment to reduce cycle times.

11. Buy new tools to reduce the tool change time in the cutting process.

12. Improve the chemicals used in the galvanizing process to reduce the cycle times.

13. Invest in the fans that dry the galvanize and paint.

14. Train the operator working in the middle storage to reduce rework time.

15. Implement barcode usage in the package process to reduce packing time.

16. Train the workers on the assembly line station one and four to decrease their cycle times

These investments increased the throughput from the base models 780 products per week up

to 1040 products per week. The cost for these investments are in total 282 000 €.

 9

3.3 Analysis of bottlenecks

3.3.1 Multiple runs to get reliable results

Because of the stochastic nature of modelling resource uptimes, attribute settings, cycle times

and so on, multiple runs are necessary to find averages. We also found a large standard deviation

(see Table 1), which makes running multiple runs even more necessary.

P_packing tot Average 5212.7
 Std. Dev. 132.97
 Minimum 4948
 Maximum 5495
 Median 5312
 # of Runs 20

Table 1: Total products in the packaging process after 25 runs

3.3.2 The base models weaknesses

The diagram below in Figure 2 (left) shows the throughput of the system after a set of

improvements. This test is made with the 9 improvements that are used in step 2 in order to

identify where the bottleneck is located in the base model. By definition the bottleneck is a

constraint that prevents the system from achieving its goal and if the goal is high throughput the

bottleneck is the resource that benefits the system the most when being improved, (Goldratt,

1986). All improvements are applied to the system separately. The three highest throughputs are

done before the middle storage and the three lowest results are in or after the middle storage.

This indicates that the bottleneck was located before the middle storage in the original system. It

also indicates that the cutting and drilling machine is the bottleneck since the third investment is

increasing the uptime of the machine.

If the same test is run with the difference of having profit as goal instead of the factory

throughput (Figure 2 (right)), then the bottleneck may change as well, which is confirmed by the

graph below. In fact the improvement that increased the throughput the least proved to be the

most impactful factor in increasing the profit.

Figure 2: Bottleneck identification for throughput (left) and profit (right)

 10

3.4 Analysis of warm-up time

The simulation is always started with no parts in any of the queues and with the resources in

passive state. Loads entering in such a state will flow through the system at faster rate than

loads entering during more represented times. The effect of this initial bias is eliminated by not

starting data collection until the simulation reaches a steady state. Autostat warmup graph was

used to find the steady state, which can be seen in Figure 3. From this graph we decided to use a

warmup period of 30 hours.

Figure 3: Warmup graph from Autostat

4 Project results

4.1 Improvement step 1

The set of improvements in step 1 (see experimental design) increases the profit per week by

60 % and decreases the amount of products in the middle storage by 47 % (see Figure 4). The

decrease of average amount of products in the middle storage depends mostly on more

improvements being done after the middle storage than before the middle storage. It also comes

to play that several improvements have been made directly on the middle storage that decrease

its cycle time.

4.2 Improvement step 2

The second step of improvements results in 1040 products per week in throughput, (up from

the original 780), meaning a 33% performance increase which is high compared to the result from

step 1. It is also interesting that the profit has increased by so little from step 1 to step 2. The

profit can be expressed in profit per product as well to give a different picture of the profit. For

step 1 it is 23 € per product and after step 2 it has decreased to 18 € per product.

 11

Figure 4: Results from improvement steps 1 and 2

4.3 Extra task A: Order point optimization

4.3.1 Implementation

As soon as the first storage buffer reaches a specific low limit then the system should order as

many packages as would fill the buffer. The truck will arrive in a while but may not fill the

buffer since packages could have been removed somewhere between order and delivery. This

assumption was made to avoid having the truck arriving but not being able to load all packages.

An assumption is also made that only one truck can be ordered at a time. Otherwise it would for

example be possible to send one more truck as soon as one package leaves the first buffer. This

would probably be costly as well.

4.3.2 Tests and result

To test the performance we did 30 runs (each with 20 replications) on the base model where

the first one is with the order point strategy off and the other 29 is with varying order point

from 0 to 29. At 0 an order will be sent when the buffer is completely empty and 29 as soon as 1

package leaves the first buffer. The result can be seen in Figure 5 (for buffer capacity 30) and

compared to the run without order point strategy in Table x.

 12

Figure 5: Order point strategy simulation

Q_deliver_box tot Average 784,6

Table 2: Without order point strategy

A trend clearly shows that ordering as soon as possible is better. Another test was run where

the buffer capacity was varying from 10 to 60 at order strategies ranging from 0 to 29 generating

the graph in Figure 5. The result from these runs in indicates that the system performs worse for

buffer capacities under 29. The result from the last simulation can be used to optimize the cost of

acquiring goods. A compromise between how often to order and the cost of a high capacity buffer

would be evaluated.

4.4 Extra task B: Energy saving strategy

4.4.1 Implementation

A state set with the two states active_state and passive_state is introduced. As soon as

either resource R_cutter(x) or R_cutting_and_drilling is starved or blocked it is put into power

save mode. When the resource is requested a check will be done to see if the resource is in power

save mode and if so, start it. See Code 1. At the end of the run the consumed energy is

calculated in kWh (see Equation 1) and printed to the console.

 13

// start the machine if it is in power save mode
if V_cutting_and_drilling_power_save_strategy = 1

 and R_cutter(A_qcutter index) state = power_save_active then begin
 wait for 10 sec
 set R_cutter(A_qcutter index) state to power_save_inactive

end

Code 1: Power save code implementation

Equation 1: Energy consumption calculation

4.4.2 Result

The performance of the overall system decreased when the energy saving strategy was

activated. Any improved throughput would have been unrealistic since we run the machines less.

By converting the saved energy into actual saved energy cost the result could be used to find out

if it would be profitable to run the machines in power save or not. In this case it is highly

unlikely that this power save function is profitable since the price for electricity in Sweden is

approximately 0.2 sek/kWh (SCB, 2012)

 Without power save With power save

Packages delivered 778,2 758

Cutters (kWh) 1040 677

Cutting and drilling (kWh) 1300 856

Cutters saved (%) - 35%

Cutting and drilling saved (%) - 34%

Table 3: Comparison table for energy saving strategy

4.5 Extra task C: Middle storage as supermarket

4.5.1 Implementation

A conceptual model for the implementation of task C can be seen inFigure 6. A procedure

will each day generate a number of orders based on the distributions from previous year’s orders.

An array of 3 order lists will make sure that the loads will not continue when they reach the

middle storage unless an order exist that has the same length as the length of the load. When an

 14

order is received in middle storage it will continue manufacturing according to the current

orders. Every order is split into a variable array of 21, (3 product types, 3 lengths and 3 colours

except for one product type). When an order is received by a load it will remove the order and

send a new order to produce a core of the same length as the current length. If the cutters do not

have any orders they will simply produce cores of different length from a random distribution.

Figure 6: Flow chart

4.5.2 Result

Each day we are supposed to manufacture and deliver an average of 215 packages. With our

best optimized strategy, (investment step 2), we produce 1040 products per week or 208 products

per day with the factory running full time. The average number of products per week that the

order demands is 215 per day. Satisfying 98% of the orders to be delivered with the truck the

next day therefore become difficult.

During an 185 hours run with 8 hours warm-up, 55% of the orders requested from the market

has been produced. This is rather far from satisfying the demand of 98% even though we are

using the investment set that maximizes the throughput of lights from the factory.

5 Discussion

5.1 Discussion of the results from improvement step 2

If the profit per product continues to decrease when Lightning Inc. increase their production

volume it will eventually become unprofitable to increase the production volume. This outcome is

highly unlikely though since the costs will decrease rather then increase when increasing

production volume. One big difference between step one and two is that step two has more WIP

in the system which means that they have more products that the company has paid for but not

received any income from.

The methodology that is used in this project is mostly obtained from Proceedings of the

Winter Simulation Conference and from the Theory of constraints (Goldratt, 1986). The theory

 15

of constraints is useful in almost any kind of production simulation project. In the factory there

is a big storage in the middle of the production flow. This middle storage is highly useful as an

indicator of where the systems biggest constraint is located. If the middle storage is empty the

factory’s bottleneck is located in the first part of the system, meaning the later part of the

system performs better. If the middle storage later is full it means that the bottleneck has moved

to the later part of the system. This kind of improvement process and constraint identification is

what the Theory of constraints is about. In five methods of detecting a systems bottleneck are

discussed. These methods are all useful in specific cases but in this project method five, four and

one were used. Perhaps the best tool for us was however the optimisation function in Autostat.

This provided an iterative way of finding the best solution depending on what parameter that

was desired to maximize.

5.2 No night shift

We decided to model only 8 hours per day instead of modelling 24 hours with 8 hour work

day and 1 hour lunch. The most important consequence of this approach is the increased cycle

time in middle storage. If we had modelled 24 hours some of the cores would have been able to

dry over the night. Time is a resource in any project and the only reason for simplifying and only

modelling 8 hours was to save time, but looking back we are not sure if the approach brought

sufficient saved time. For someone else starting this project we would recommend modelling 24

hours and introducing a state for each rescore when the factory is closed (to make sure that this

time is not included in the utilization analysis).

5.3 Bottleneck indication

We had an idea about using shifting bottleneck indication to find the current bottlenecks.

Automod support most of the common bottleneck identification methods but not the shifting

bottleneck method. Implementing Average active duration method (Roser, Nakano, and Tanaka

2001) is straight forward by introducing active and passive states. The resources with the highest

percentage being active indicate being the bottlenecks. The shifting bottleneck identification

method relies on being able to answer duration a resource is active without interruption which

makes implementation depend on memory of previous states and not only the current state. It

would be difficult, but not impossible, to implement in Automod which is visualized in Figure x.

 16

Figure 7: The difficulties with implementing shifting bottleneck detection. Original image from (Roser,

2001).

Shifting bottleneck method is considered superior and that is why we spent time sketching on

a solution to implement it, (Roser, 2001). The most promising idea was to plot machine states

against time with an offset on the y axis, (see Figure 8). That plot would then be used as

support when implementing an algorithm to calculate duration of sole bottleneck and shifting

bottleneck for each resource. It is a shame that Automod only supports the very basic bottleneck

identificators out of the box and not the shifting bottleneck method.

Figure 8: Sketch of how to implement shifting bottleneck with Automod basic graph capabilities

5.4 Constraints

Our main focus throughout the project was to increase the throughput and not necessarily on

improving the profit. If this were an industry project it would make more sense to increase the

profit since this often is more important to companies. If profit optimization was the goal more

focus would have been on finding optimal buffers sizes.

6 Conclusion

One conclusion that can be taken from this project is that there are many different ways to

find a production systems bottleneck. Every time a bottleneck is eliminated a new one will take

place in a different place. Improvements on any other parts of a serial system than the constraint

are practically wasted since it will not bring the system closer to the goal. Another conclusion is

that finding bottlenecks in Automod is a tedious task and without the availability of inbuilt

modern tools like Shifting bottleneck identification. The result from the simulation was an

 17

increase of the throughput by 33%, reduced WIP and increase of profit per week by 66% which

proves simulation can be used to improve a production system, assuming the model closely

resembles the reality.

 18

7 Bibliography

• Banks, C. N. (2000). Discrete Event System Simulation, 3rd ed.

• Goldratt, E. M. (1986). The goal: a process of ongoing improvement.

• Roser, C. N. (2001). A Practical Bottleneck Detection Method. In Winter Simulation

Conference, ed. B. A. Peters, J. S. Smith, D. J. Medeiros, and M. W. Rohrer, 949-

953, Arlington, Virginia, USA: Institute of Electrical and Electronics Engineers. .

• S. Chick, P. J. (2003). Comparison of bottleneck detection methods for AGV systems.

• SCB. (2012). Prisutveckling på el och naturgas samt leverantörsbyten, första

kvartalet 2012. Retrieved 12 2013 from scb.se:

http://www.scb.se/Statistik/EN/EN0304/2012K01/EN0304_2012K01_SM_EN24SM

1202.pdf

 19

9 Appendices

9.1 Appendix 1: Model logic code

begin model initialization function

 // init variables

 //storage variables
 set V_objects_in_storage to 0
 set V_painting_repair to 0
 set V_painting_refill to 0

 // order strategy parameters (extra task 1)
 //set V_order_point_strategy to 0 // extra task 1
 //set Q_core_package_storage capacity to 30
 //set V_order_point to 15 // order (Q_core_package_storage remaining space) packages
when stock reaches this value
 //set V_order_point_max_size to 15 // max packages in each delivery

 // power saving for cutting and drilling (extra task 2)
 //set V_cutting_and_drilling_power_save_strategy to 1

 // order loads by forcast from market (extra task 3)
 set V_Ordering_task_C to 0

 if V_work_station_decrease_cycle_time_investment_step = 1 then
 set V_work_station_decrease_cycle_time_investment(1) to 1
 else if V_work_station_decrease_cycle_time_investment_step = 2 then begin
 set V_work_station_decrease_cycle_time_investment(4) to 1
 set V_work_station_decrease_cycle_time_investment(1) to 1
 end
 else if V_work_station_decrease_cycle_time_investment_step = 3 then begin
 set V_work_station_decrease_cycle_time_investment(2) to 1
 set V_work_station_decrease_cycle_time_investment(4) to 1
 set V_work_station_decrease_cycle_time_investment(1) to 1
 end
 else if V_work_station_decrease_cycle_time_investment_step = 4 then begin
 set V_work_station_decrease_cycle_time_investment(1) to 2
 set V_work_station_decrease_cycle_time_investment(2) to 1
 set V_work_station_decrease_cycle_time_investment(4) to 1
 end
 else if V_work_station_decrease_cycle_time_investment_step = 5 then begin
 set V_work_station_decrease_cycle_time_investment(4) to 2
 set V_work_station_decrease_cycle_time_investment(1) to 2
 set V_work_station_decrease_cycle_time_investment(2) to 1
 end
 else if V_work_station_decrease_cycle_time_investment_step = 6 then begin
 set V_work_station_decrease_cycle_time_investment(3) to 1
 set V_work_station_decrease_cycle_time_investment(4) to 2
 set V_work_station_decrease_cycle_time_investment(1) to 2
 set V_work_station_decrease_cycle_time_investment(2) to 1
 end
 else if V_work_station_decrease_cycle_time_investment_step = 7 then begin
 set V_work_station_decrease_cycle_time_investment(3) to 1
 set V_work_station_decrease_cycle_time_investment(4) to 2
 set V_work_station_decrease_cycle_time_investment(1) to 2
 set V_work_station_decrease_cycle_time_investment(2) to 2
 end
 else if V_work_station_decrease_cycle_time_investment_step = 8 then begin
 set V_work_station_decrease_cycle_time_investment(3) to 2
 set V_work_station_decrease_cycle_time_investment(4) to 2
 set V_work_station_decrease_cycle_time_investment(1) to 2
 set V_work_station_decrease_cycle_time_investment(2) to 2
 end

 set convassembly.sec26 velocity to
0.4*pow(1.2,V_increase_speed_on_conveyor_investment) m per sec

 //set V_extra_fictures_investment to 0
 if V_extra_fictures_investment > 0 then
 set V_free_fixtures to V_free_fixtures + V_extra_fictures_investment

 20

 //set capacity of Q_packing_boxes
 if V_increase_packing_boxes_size_investment = 0 then begin
 set Q_packing_boxes(1) capacity to 5
 set Q_packing_boxes(2) capacity to 5
 set Q_packing_boxes(3) capacity to 5
 set Q_packing_boxes(4) capacity to 5
 set Q_packing_boxes(5) capacity to 5
 set Q_packing_boxes(6) capacity to 5
 set Q_packing_boxes(7) capacity to 5
 set Q_packing_boxes(8) capacity to 5
 set Q_packing_boxes(9) capacity to 5
 set Q_packing_boxes(10) capacity to 5
 set Q_packing_boxes(11) capacity to 5
 set Q_packing_boxes(12) capacity to 5
 set Q_packing_boxes(13) capacity to 5
 set Q_packing_boxes(14) capacity to 5
 set Q_packing_boxes(15) capacity to 5
 set Q_packing_boxes(16) capacity to 5
 set Q_packing_boxes(17) capacity to 5
 set Q_packing_boxes(18) capacity to 5
 set Q_packing_boxes(19) capacity to 5
 set Q_packing_boxes(20) capacity to 5
 set Q_packing_boxes(21) capacity to 5
 end
 else begin
 set Q_packing_boxes(1) capacity to 10
 set Q_packing_boxes(2) capacity to 10
 set Q_packing_boxes(3) capacity to 10
 set Q_packing_boxes(4) capacity to 10
 set Q_packing_boxes(5) capacity to 10
 set Q_packing_boxes(6) capacity to 10
 set Q_packing_boxes(7) capacity to 10
 set Q_packing_boxes(8) capacity to 10
 set Q_packing_boxes(9) capacity to 10
 set Q_packing_boxes(10) capacity to 10
 set Q_packing_boxes(11) capacity to 10
 set Q_packing_boxes(12) capacity to 10
 set Q_packing_boxes(13) capacity to 10
 set Q_packing_boxes(14) capacity to 10
 set Q_packing_boxes(15) capacity to 10
 set Q_packing_boxes(16) capacity to 10
 set Q_packing_boxes(17) capacity to 10
 set Q_packing_boxes(18) capacity to 10
 set Q_packing_boxes(19) capacity to 10
 set Q_packing_boxes(20) capacity to 10
 set Q_packing_boxes(21) capacity to 10
 end

 // mess with assembly workers
 if V_synchronize_assembly_line_improvement = 0 then begin
 set V_convassembly_products_before_getting_material(1) to 40
 set V_convassembly_products_before_getting_material(2) to 8
 set V_convassembly_products_before_getting_material(3) to 3
 set V_convassembly_products_before_getting_material(4) to 20
 end
 // best one so far:
 /*
 set V_eliminate_burr_removal_investment to 1
 set V_extra_fictures_investment to 22
 set V_fast_drying_paint_investment to 1
 set V_increase_speed_on_conveyor_investment to 0
 set V_reduce_cutting_and_drilling_cycle_times_investment to 2
 set V_reduce_cutting_cycle_times_investment to 2
 set V_reduce_cutting_tool_time_change_investment to 2
 set V_reduce_galvanizing_cycle_times_investment to 1
 set V_work_station_decrease_cycle_time_investment(1) to 0
 set V_work_station_decrease_cycle_time_investment(2) to 0
 set V_work_station_decrease_cycle_time_investment(3) to 0
 set V_work_station_decrease_cycle_time_investment(4) to 0

 */

 /* investments */
 increment C_investments by 4000*V_increase_speed_on_conveyor_investment
 increment C_investments by 4000*V_extra_fictures_investment
 increment C_investments by 30000*V_eliminate_burr_removal_investment

 21

 increment C_investments by 25000*V_fast_drying_paint_investment
 increment C_investments by 20000*V_reduce_galvanizing_cycle_times_investment
 increment C_investments by 15000*V_reduce_cutting_and_drilling_cycle_times_investment
 increment C_investments by 20000*V_reduce_cutting_cycle_times_investment
 increment C_investments by 25000*V_reduce_cutting_tool_time_change_investment
 increment C_investments by 10000*V_increase_MTTF_cutters_investment
 increment C_investments by 13000*V_increase_MTTR_cutters_investment
 increment C_investments by 10000*V_increase_MTTF_cutting_and_drilling_investment
 increment C_investments by 6000*V_increase_MTTR_cutting_and_drilling_investment
 increment C_investments by 10000* V_increase_MTTF_galvanizing_investment
 increment C_investments by 6000* V_increase_MTTR_galvanizing_investment
 increment C_investments by 14000* V_reduce_painting_cycle_time_investment
 increment C_investments by 6000* V_increse_painting_refill_capacity_investment
 increment C_investments by 5000*V_painting_done_by_Julia_investment
 increment C_investments by 5000*V_painting_inspection_done_by_Gert_investment
 increment C_investments by 60000*V_extra_cutter_investment
 increment C_investments by 40000*V_extra_cutting_and_drilling_investment
 increment C_investments by 50000*V_automatic_painting_station_investment
 increment C_investments by 20000*V_reduce_middlestorage_rework_investment
 increment C_investments by 6000*V_reduce_middlestorage_cykletime_investment
 increment C_investments by 10000*V_reduce_packing_cykletime_investment
 increment C_investments by 5000*V_increase_packing_boxes_size_investment
 increment C_investments by 15000*V_work_station_decrease_cycle_time_investment_step

 // create loads
 if V_autostat = 0 or (C_investments value > 200000 and C_investments value < 300000)
then begin
 create 1 load of type L_dummy to P_core_package_delivery
 create 1 load of type L_galvanizing_dummy to P_Downtime_galvanizing
 create 3 loads of type L_cutting_dummy to P_DownTime_cutting
 create 3 loads of type L_cutting_dummy to P_DownTime_cutting_and_drilling
 create 1 load of type L_conveyor_dummy to P_DownTime_conveyor
 create 10 load of type L_personell_dummy to P_DownTime_personell
 create 4 loads of type L_conveyor_work_stations_get_material_dummy to
P_conveyor_work_stations_get_material_dummy
 if V_Ordering_task_C = 1 then
 create 1 load of type L_ordering_task_C to P_Ordering_task_C
 end
 else begin
 // if we break the investment limit, then set profit to 0
 set C_profit_per_week to 0
 end
 return 0
end

begin model snap function
 if Q_dummy value = 0 then
 return true

 //Machining cost for Cutting machines 100 € per hour processing
 increment C_cost by 100*ac/3600*(R_cutter(1) utilization)
 increment C_cost by 100*ac/3600*(R_cutter(2) utilization)

 //Machining cost for Cutting/Drilling machines 120 € per hour processing
 increment C_cost by 120*ac/3600*(R_cutting_and_drilling(1) utilization)
 increment C_cost by 120*ac/3600*(R_cutting_and_drilling(2) utilization)

 // Cost for Assembly line and Equipment 100 € per total hour
 increment C_cost by 100*ac/3600

 //Each operator costs 40 € per hour
 increment C_cost by 40*(9-V_eliminate_burr_removal_investment)*ac/3600

 //The maintenance personal cost 50 € per hour
 increment C_cost by 50*ac/3600

 // Running cost for the facility is 20000 € month
 increment C_cost by 20000/4/40*ac/3600

 // variable cost
 increment C_cost by C_variable_costs value

 set C_profit_per_week to (C_income value - C_cost value)/(ac/3600)*40

 print "C_cost: " C_cost value to message

 22

 print "C_variable_cost: " C_variable_costs value to message
 print "C_income:" C_income value to message
 print "C_investments:" C_investments value to message
 print "Packages shipped: " Q_deliver_box total to message
 if (ac/3600)*40*5*pow(2, V_increase_packing_boxes_size_investment) != 0 then
 print "Products shipped per week: " (Q_deliver_box total)/(ac/3600)*40*5*pow(2,
V_increase_packing_boxes_size_investment) to message
 print "Profit after " (ac/3600) " hours: " (C_income value - C_cost value) to message
 print "Profit per week: " C_profit_per_week value to message
 if Q_deliver_box total != 0 then
 print "Profit per product: " (C_income value - C_cost value)/Q_deliver_box
total to message /// Q_deliver_box value to message
 if V_cutting_and_drilling_power_save_strategy = 1 then begin
 set C_r_cutters_energy to (R_cutter(1) power_save_active average+R_cutter(2)
power_save_active average +V_extra_cutter_investment*R_cutter(3) power_save_active
average)*2*(ac/3600)
 +(R_cutter(1) power_save_inactive average+R_cutter(2)
power_save_inactive average +V_extra_cutter_investment*R_cutter(3) power_save_inactive
average)*1*(ac/3600)
 set C_r_cutting_and_drilling_energy to (R_cutting_and_drilling(1)
power_save_active average+R_cutting_and_drilling(2) power_save_active average
+V_extra_cutting_and_drilling_investment*R_cutting_and_drilling(3) power_save_active
average)*2.5*(ac/3600)
 +(R_cutting_and_drilling(1) power_save_inactive
average+R_cutting_and_drilling(2) power_save_inactive average
+V_extra_cutting_and_drilling_investment*R_cutting_and_drilling(3) power_save_inactive
average)*0.7*(ac/3600)
 print "R_cutter(1) % " R_cutter(1) power_save_active average to message
 print "R_cutter(2) % " R_cutter(2) power_save_active average to message
 print "R_cutter(3) % " R_cutter(3) power_save_active average to message
 print "R_cutting_and_drilling(1) % " R_cutting_and_drilling(1)
power_save_active average to message
 print "R_cutting_and_drilling(2) % " R_cutting_and_drilling(2)
power_save_active average to message
 print "R_cutting_and_drilling(3) % " R_cutting_and_drilling(3)
power_save_active average to message
 end
 else begin
 set C_r_cutters_energy to (2+V_extra_cutter_investment)*2*(ac/3600)
 set C_r_cutting_and_drilling_energy to
(2+V_extra_cutting_and_drilling_investment)*2.5*(ac/3600)
 end
 print "R_cutters energy " C_r_cutters_energy value " kWh" to message
 print "R_cutting_and_drilling energy " C_r_cutting_and_drilling_energy value " kWh" to
message

 return true
end

begin P_core_package_delivery arriving procedure
 move into Q_dummy

 print pow(9,5) this load to message
 // new order strategy
 if V_order_point_strategy = 1 then begin
 // asssume 10 packages are already in stock
 create 10 load of type L_core_package to P_core_package_storage
 while 1=1 do begin
 /*
 an order of raw material should be placed when there are X cores left
in stock.
 From the time the order is placed and the order is received it takes
between 3 to 9 hours, and the most likely value is 7 hours.
 find a good order point (X) using simulation
 Expected service level of raw material for the cutters to be 98%
 */

 // if remaining space is less or equal than order point then a new
order should be placed
 if Q_core_package_storage current loads <= V_order_point then begin
 // how many packages should we order?
 set V_packages_to_order to Q_core_package_storage remaining
space

 // order and deliver

 23

 wait for triangular 3,7,9 hr
 create V_packages_to_order load of type L_core_package to
P_core_package_storage
 end
 else begin
 /* if the stock is enogh, wait for OL_cutting which is called
when stock is decreased.
 this will simply trigger a new loop */
 wait to be ordered on OL_cutting
 end
 end
 end

 // traditional order strategy
 else begin
 while 1=1 do begin
 if Q_core_package_storage remaining space < 30 then
 wait to be ordered on OL_cutting
 create 30 load of type L_core_package to P_core_package_storage
 wait for 8 hr
 end
 end
end

begin P_core_package_storage arriving procedure
 if V_Ordering_task_C = 1 then begin
 if V_middle_storage_request(1) > 0 then begin
 set A_core_length to 5
 decrement V_middle_storage_request(1) by 1
 end
 else if V_middle_storage_request(2) > 0 then begin
 set A_core_length to 6
 decrement V_middle_storage_request(2) by 1
 end
 else if V_middle_storage_request(3) > 0 then begin
 set A_core_length to 7
 decrement V_middle_storage_request(3) by 1
 end
 else
 set A_core_length to nextof(5,6,7)
 end
 else
 set A_core_length to nextof(5,6,7)

 if A_core_length = 5 then
 scale this load to z 5 ft
 else if A_core_length = 6 then
 scale this load to z 6 ft
 else
 scale this load to z 7 ft

 move into Q_core_package_storage
 send to P_core_cutting
end

begin P_core_cutting arriving procedure
 if V_extra_cutter_investment = 1 then begin
 choose a queue from among Q_cutter(1), Q_cutter(2), Q_cutter(3) whose current
loads is minimum
 save choice as A_qcutter
 end
 else begin
 choose a queue from among Q_cutter(1), Q_cutter(2) whose current loads is
minimum
 save choice as A_qcutter
 end
 move into A_qcutter
 if Q_core_package_storage remaining space >= 30 then
 order 1 load from OL_cutting to continue
 set R_cutter(A_qcutter index) state to active_state // bottleneck analysis

 if V_r_cutter_cuts(A_qcutter index) >= 100 then begin
 use R_Sven_the_cutter for uniform 5, 2 min
 set V_r_cutter_cuts(A_qcutter index) to 0
 end

 24

 if V_cutter_previous_length(A_qcutter index) <> A_core_length then begin
 // lengthts unequal, we need setup
 use R_Sven_the_cutter for (n 40, 6)*pow(0.5,
V_reduce_cutting_tool_time_change_investment) sec
 end

 set A_cuts to 0
 while A_cuts < 10 do begin
 // start the machine if it is in power save mode
 if V_cutting_and_drilling_power_save_strategy = 1
 and R_cutter(A_qcutter index) state = power_save_active then begin
 wait for 10 sec
 set R_cutter(A_qcutter index) state to power_save_inactive
 end
 use R_cutter(A_qcutter index) for 82*pow(0.8,
V_reduce_cutting_cycle_times_investment) sec
 inc A_cuts by 1
 inc V_r_cutter_cuts(A_qcutter index) by 1

 if Q_burr_wait remaining space < 1 then begin
 //print "Q_burr_wait full. Wait for OL_burr_removal" this load to
message
 if V_cutting_and_drilling_power_save_strategy = 1
 set R_cutter(A_qcutter index) state to power_save_active
 else
 set R_cutter(A_qcutter index) state to passive_state //
bottleneck analysis
 wait to be ordered on OL_burr_removal
 end
 //print "Q_burr_wait not full. create a new load and send to P_burr" this load
to message
 clone 1 loads to P_burr new load type L_core
 end

 if Q_core_package_storage current loads > 0 then begin
 if V_cutting_and_drilling_power_save_strategy = 1 then
 set R_cutter(A_qcutter index) state to power_save_inactive
 end
 else begin
 if V_cutting_and_drilling_power_save_strategy = 1 then
 set R_cutter(A_qcutter index) state to power_save_active
 else
 set R_cutter(A_qcutter index) state to passive_state
 end
 send to die
end

begin P_DownTime_cutting arriving procedure
 move into Q_dummy
 set A_cutting_dummy_index = nextof(1,2,3)

 // we do not need the third dummy if extra cutter is inactive
 if V_extra_cutter_investment = 0 and A_cutting_dummy_index = 3
 send to die
 while 1=1 do begin
 wait for e 4*pow(0.8, V_increase_MTTF_cutters_investment) hr
 set R_cutter(A_cutting_dummy_index) state to active_state // bottleneck
analysis
 take down R_cutter(A_cutting_dummy_index)
 use R_Britta_the_problem_solver for (triangular 12, 30, 35 min)*pow(0.8,
V_increase_MTTR_cutters_investment)
 bring up R_cutter(A_cutting_dummy_index)
 end
end

begin P_burr arriving procedure
 move into Q_burr_wait
 if V_eliminate_burr_removal_investment = 0 then
 use R_burr_removal for w 1.5, 70 sec
 send to oneof(97:P_cutting_and_drilling,3:P_discard_after_burr_removal)
end

begin P_cutting_and_drilling arriving procedure

 // chose a cutting and drilling machine
 if V_extra_cutting_and_drilling_investment = 1 then begin

 25

 choose a queue from among Q_cutting_and_drilling(1), Q_cutting_and_drilling(2),
Q_cutting_and_drilling(3) whose current loads is minimum
 save choice as A_qcutting_and_drilling_wait
 end
 else begin
 choose a queue from among Q_cutting_and_drilling(1), Q_cutting_and_drilling(2)
whose current loads is minimum
 save choice as A_qcutting_and_drilling_wait
 end

 if Q_cutting_and_drilling(A_qcutting_and_drilling_wait index) remaining space = 0
 wait to be ordered on OL_cutting_and_drilling(A_qcutting_and_drilling_wait
index)

 // use the operator to load the machine
 use R_Bosse_the_cutter_and_driller for w 2, 40 sec
 move into Q_cutting_and_drilling(A_qcutting_and_drilling_wait index)
 // Q_burr_wait now has a spot free
 order 1 load from OL_burr_removal to continue

 // setup
 if V_cutting_and_drilling_previous_length(A_qcutting_and_drilling_wait index) <>
A_core_length then begin
 use R_Bosse_the_cutter_and_driller for u 50,10 sec
 end

 // start the machine if it is in power save mode
 if V_cutting_and_drilling_power_save_strategy = 1
 and R_cutting_and_drilling(A_qcutting_and_drilling_wait index) state =
power_save_active then begin
 wait for 10 sec
 set R_cutting_and_drilling(A_qcutting_and_drilling_wait index) state to
power_save_inactive
 end
 // use the machine
 use R_cutting_and_drilling(A_qcutting_and_drilling_wait index) for 111*pow(0.9,
V_reduce_cutting_and_drilling_cycle_times_investment) sec
 send to P_galvanizing
end

begin P_DownTime_cutting_and_drilling arriving procedure
 move into Q_dummy
 set A_cutting_and_drilling_dummy_index = nextof(1,2,3)

 // we do not need the 3rd if extra cutting_and_drilling is inactive
 if V_extra_cutting_and_drilling_investment = 0 and A_cutting_and_drilling_dummy_index
= 3 then
 send to die
 while 1=1 do begin
 wait for e 3*pow(0.8, V_increase_MTTF_cutting_and_drilling_investment) hr
 take down R_cutting_and_drilling(A_cutting_and_drilling_dummy_index)
 use R_Britta_the_problem_solver for (triangular 18, 25, 55)*pow(0.8,
V_increase_MTTR_cutting_and_drilling_investment) min
 bring up R_cutting_and_drilling(A_cutting_and_drilling_dummy_index)
 end
end

begin P_discard_after_burr_removal arriving procedure
 //print "Discard this " this load to message
 move into Q_discard_after_burr_removal
 order 1 load from OL_burr_removal to continue
end

begin P_galvanizing arriving procedure
 if A_core_length = 5 then
 set A_qgalvanizing_wait_index to 1
 else if A_core_length = 6 then
 set A_qgalvanizing_wait_index to 2
 else
 set A_qgalvanizing_wait_index to 3

 if Q_galvanizing_wait(A_qgalvanizing_wait_index) remaining space = 0 then begin
 // blocked so activate power save for R_cutting_and_drilling
 set R_cutting_and_drilling(A_qcutting_and_drilling_wait index) state to
power_save_active
 wait to be ordered on OL_galvanizing_wait(A_qgalvanizing_wait_index)

 26

 end
 move into Q_galvanizing_wait(A_qgalvanizing_wait_index)

 // cutting_and_drilling_machine now is free
 order 1 load from OL_cutting_and_drilling(A_qcutting_and_drilling_wait index) to
continue

 // check if Q_cutting_and_drilling(index) is starved and if so activate power save
mode
 if Q_cutting_and_drilling(A_qcutting_and_drilling_wait index) remaining space = 1 then
 set R_cutting_and_drilling(A_qcutting_and_drilling_wait index) state to
power_save_active

 if Q_galvanizing_wait(A_qgalvanizing_wait_index) remaining space = 0 then begin
 if Q_galvanizing_bath(1) remaining space = 0 then
 wait to be ordered on OL_galvanizing_bath(1)
 send to P_galvanizing_bath
 end
 wait to be ordered on OL_galvanizing_batch(A_qgalvanizing_wait_index)
end

begin P_galvanizing_bath arriving procedure

 // loop through all 10 baths
 set A_galvanize_counter to 1
 while A_galvanize_counter < 11 do begin

 if Q_galvanizing_bath(A_galvanize_counter) remaining space = 0 then
 wait to be ordered on OL_galvanizing_bath(A_galvanize_counter)
 move into Q_galvanizing_bath(A_galvanize_counter)

 if A_galvanize_counter = 1 then begin
 order all loads from OL_galvanizing_batch(A_qgalvanizing_wait_index) to
die
 order 5 loads from OL_galvanizing_wait(A_qgalvanizing_wait_index) to
continue
 end
 if A_galvanize_counter <> 1 then
 order 1 load from OL_galvanizing_bath(A_galvanize_counter-1) to
continue

 //print "move into Q_galvanizing_bath " A_galvanize_counter " " this load to
message

 // use time depends on length
 if A_core_length = 5 then
 use R_galvanizing_bath(A_galvanize_counter) for
270*pow(0.9,V_reduce_galvanizing_cycle_times_investment) sec
 else if A_core_length = 6 then
 use R_galvanizing_bath(A_galvanize_counter) for
300*pow(0.9,V_reduce_galvanizing_cycle_times_investment) sec
 else
 use R_galvanizing_bath(A_galvanize_counter) for
500*pow(0.9,V_reduce_galvanizing_cycle_times_investment) sec

 inc A_galvanize_counter by 1
 end

 send to P_unbatching_before_middle_storage
end

begin P_Downtime_galvanizing arriving procedure
 move into Q_dummy
 while 1=1 do begin
 wait for e 16*pow(0.8, V_increase_MTTF_galvanizing_investment) hr
 take down R_galvanizing_bath(1)
 take down R_galvanizing_bath(2)
 take down R_galvanizing_bath(3)
 take down R_galvanizing_bath(4)
 take down R_galvanizing_bath(5)
 take down R_galvanizing_bath(6)
 take down R_galvanizing_bath(7)
 take down R_galvanizing_bath(8)
 take down R_galvanizing_bath(9)
 take down R_galvanizing_bath(10)

 27

 use R_Britta_the_problem_solver for (w 1.5, 40)*pow(0.8,
V_increase_MTTR_galvanizing_investment) min
 bring up R_galvanizing_bath(1)
 bring up R_galvanizing_bath(2)
 bring up R_galvanizing_bath(3)
 bring up R_galvanizing_bath(4)
 bring up R_galvanizing_bath(5)
 bring up R_galvanizing_bath(6)
 bring up R_galvanizing_bath(7)
 bring up R_galvanizing_bath(8)
 bring up R_galvanizing_bath(9)
 bring up R_galvanizing_bath(10)
 end
end

begin P_unbatching_before_middle_storage arriving procedure
 set A_unbatching_before_middle_storage to 0
 while A_unbatching_before_middle_storage < 5 do begin
 inc A_unbatching_before_middle_storage by 1
 if Q_middle_storage remaining space = 0 then begin
 set R_middle_storage state to active_state
 wait to be ordered on OL_middle_storage
 end
 clone 1 loads to P_middle_storage new load type L_core
 end

 order 1 load from OL_galvanizing_bath(10) to continue // last bath is now empty
 send to die
end

begin P_middle_storage arriving procedure
 move into Q_middle_storage
 set R_middle_storage state to passive_state

 // use Gert to move the load to storage
 use R_Gert_the_storage_operator for u 21, 5 sec

 // let galvanization dry
 if A_galvanize_dryed = 0 then begin
 wait for 2*pow(0.9, V_reduce_middlestorage_cykletime_investment) hr
 set A_galvanize_dryed to 1

 // set product type
 if V_Ordering_task_C = 1 then begin
 wait to be ordered on OL_market_request

 //if A_core_length = 5 then begin
 if V_market_request(1+(A_core_length-5)) > 0 then begin
 set A_product_type to 1
 set A_color to 1
 decrement V_market_request(1+(A_core_length-5)) by 1
 end
 else if V_market_request(4+(A_core_length-5)) > 0 then begin
 set A_product_type to 1
 set A_color to 1
 decrement V_market_request(4+(A_core_length-5)) by 1
 end
 else if V_market_request(7+(A_core_length-5)) > 0 then begin
 set A_product_type to 1
 set A_color to 2
 decrement V_market_request(7+(A_core_length-5)) by 1
 end
 else if V_market_request(10+(A_core_length-5)) > 0 then begin
 set A_product_type to 3
 set A_color to 1
 decrement V_market_request(10+(A_core_length-5)) by 1
 end
 else if V_market_request(13+(A_core_length-5)) > 0 then begin
 set A_product_type to 3
 set A_color to 1
 decrement V_market_request(13+(A_core_length-5)) by 1
 end
 else if V_market_request(16+(A_core_length-5)) > 0 then begin
 set A_product_type to 3
 set A_color to 2

 28

 decrement V_market_request(16+(A_core_length-5)) by 1
 end
 else if V_market_request(19+(A_core_length-5)) > 0 then begin
 set A_product_type to 2
 decrement V_market_request(19+(A_core_length-5)) by 1
 end
 else
 print "something is wrong" to message
 increment V_middle_storage_request(1) by 1
 //end
 end
 else
 set A_product_type to oneof(33.3:1,33.3:2,33.3:3)

 // for 1% galvanization needs to be reworked
 set A_rework_galvanizing to oneof(100-1*pow(0.5,
V_reduce_middlestorage_rework_investment):0, 1*pow(0.5,
V_reduce_middlestorage_rework_investment):1)
 if A_rework_galvanizing = 1 then begin
 //set priority to 0
 use R_Gert_the_storage_operator for n 6, 1 min
 //set priority to 1
 end

 // send HL and ML to painting
 if A_product_type = 1 or A_product_type = 3 then
 send to P_painting
 end
 // let the paint dry
 else if(A_paint_dryed = 0 and A_painted = 1) then begin
 if V_fast_drying_paint_investment = 1
 wait for 3*pow(0.9, V_reduce_middlestorage_cykletime_investment) hr
 else
 wait for 6 hr
 set A_paint_dryed to 1
 set A_rework_painting to oneof(100-3*pow(0.5,
V_reduce_middlestorage_rework_investment):0, 3*pow(0.5,
V_reduce_middlestorage_rework_investment):1)
 if A_rework_painting = 1 then
 use R_Gert_the_storage_operator for n 3, 0.4 min
 end

 // use Gert to move the load from storage
 // assign task to Gert
 /*if Q_Gert_the_storage_operator remaining space = 0
 wait to be ordered on OL_Gert_the_storage_operator
 clone 1 load to P_Gert_the_storage_operator new load type L_task*/
 use R_Gert_the_storage_operator for u 21, 5 sec
 send to P_assembly_loading

end

begin P_Gert_the_storage_operator arriving procedure

 move into Q_Gert_the_storage_operator
 wait to be ordered on OL_Gert_the_storage_operator_done
 order 1 load from OL_Gert_the_storage_operator to continue
 send to die
end

begin P_painting arriving procedure
 set priority to 1

 //Paint the product
 use R_Gert_the_storage_operator for ((w 1.5, 50)*pow(0.9,
V_reduce_painting_cycle_time_investment))*pow(0.5, V_automatic_painting_station_investment)
sec

 if V_Ordering_task_C = 0 then
 set A_color to oneof(60:1, 30:2, 10:3)

 if A_color = 1 then
 set color to brown
 else if A_color = 2 then
 set color to black
 else if A_color = 3 then

 29

 set color to green
 set A_painted to 1
 inc V_painting_refill by 1
 inc V_painting_repair by 1

 if V_painting_repair = 150 then begin
 use R_Gert_the_storage_operator for n 240, 18 sec
 set V_painting_repair to 0
 end

 if V_painting_refill = 20*pow(4, V_increse_painting_refill_capacity_investment) then
begin
 use R_Gert_the_storage_operator for u 3, 1 min
 set V_painting_refill to 0
 end

 if V_automatic_painting_station_investment = 0 then
 set V_slumpen to oneof(95:0,5:1)
 else
 set V_slumpen to oneof(99:0,1:1)

 if V_painting_inspection_done_by_Gert_investment = 1 and V_slumpen = 1 then begin

 //Paint the product
 use R_Gert_the_storage_operator for ((w 1.5, 50)*pow(0.9,
V_reduce_painting_cycle_time_investment))*pow(0.5, V_automatic_painting_station_investment)
sec

 inc V_painting_refill by 1
 inc V_painting_repair by 1

 if V_painting_repair = 150 then begin
 use R_Gert_the_storage_operator for n 240, 18 sec
 set V_painting_repair to 0
 end

 if V_painting_refill = 20*pow(4,
V_increse_painting_refill_capacity_investment) then begin
 use R_Gert_the_storage_operator for u 3, 1 min
 set V_painting_refill to 0
 end
 end

 send to P_middle_storage

end

begin P_assembly_loading arriving procedure
 if A_color = 0 then
 set color to ltyellow
 else if A_color = 1 then
 set color to orange
 else if A_color = 2 then
 set color to dkgray
 else if A_color = 3 then
 set color to ltgreen

 /*move into Q_infinite
 order 1 load from OL_middle_storage to continue
 send to die*/

 while V_free_fixtures < 1 do begin
 // middle storage is blocked. check if limiting flow
 if Q_middle_storage remaining space > 0 then
 set R_middle_storage state to passive_state // not limiting flow

 wait to be ordered on OL_free_fixture
 end
 dec V_free_fixtures by 1
 move into convassembly.staloading
 /*use R_Gert_the_storage_operator for u 21, 5 sec // Gert back to storage. not sure
 order 1 load from OL_Gert_the_storage_operator_done to continue*/
 order 1 load from OL_middle_storage to continue

 travel to convassembly.sta1
 send to P_conveyor_work_stations

 30

end

begin P_conveyor_work_stations arriving procedure
 set R_conveyor_station(1) state to active_state
 if V_convassembly_products_before_getting_material(1) = 50 then begin
 order 1 load from OL_convassembly_worker_needs_material(1)
 wait to be ordered on OL_convassembly_worker_got_material(1)
 end
 use R_conveyor_station(1) for (n 110, 11)*pow(0.8,
V_work_station_decrease_cycle_time_investment(1)) sec
 inc V_convassembly_products_before_getting_material(1) by 1
 set R_conveyor_station(1) state to passive_state

 travel to convassembly.sta2
 set R_conveyor_station(2) state to active_state
 if V_convassembly_products_before_getting_material(2) = 50 then begin
 order 1 load from OL_convassembly_worker_needs_material(2)
 wait to be ordered on OL_convassembly_worker_got_material(2)
 end
 use R_conveyor_station(2) for (n 90, 8)*pow(0.8,
V_work_station_decrease_cycle_time_investment(2)) sec
 inc V_convassembly_products_before_getting_material(2) by 1
 set R_conveyor_station(2) state to passive_state

 travel to convassembly.sta3
 set R_conveyor_station(3) state to active_state
 if V_convassembly_products_before_getting_material(3) = 50 then begin
 order 1 load from OL_convassembly_worker_needs_material(3)
 wait to be ordered on OL_convassembly_worker_got_material(3)
 end
 use R_conveyor_station(3) for (n 75, 4)*pow(0.8,
V_work_station_decrease_cycle_time_investment(3)) sec
 inc V_convassembly_products_before_getting_material(3) by 1
 set R_conveyor_station(3) state to passive_state

 travel to convassembly.sta4
 set R_conveyor_station(4) state to active_state
 if V_convassembly_products_before_getting_material(4) = 50 then begin
 order 1 load from OL_convassembly_worker_needs_material(4)
 wait to be ordered on OL_convassembly_worker_got_material(4)
 end
 use R_conveyor_station(4) for (n 95, 7)*pow(0.8,
V_work_station_decrease_cycle_time_investment(4)) sec
 inc V_convassembly_products_before_getting_material(4) by 1
 set R_conveyor_station(4) state to passive_state

 travel to convassembly.staunloading
 if Q_Julia_the_packer remaining space = 0
 wait to be ordered on OL_Julia_the_packer
 clone 1 loads to P_conveyor_unloading new load type L_core
 wait to be ordered on OL_staunloading_done

 travel to convassembly.stadie
 inc V_free_fixtures by 1
 order 1 load from OL_free_fixture to continue
 send to die
end

begin P_conveyor_work_stations_get_material_dummy arriving procedure
 move into Q_dummy
 set A_convassembly_worker_index to nextof(1,2,3,4)
 while 1=1 do begin
 if
V_convassembly_products_before_getting_material(A_convassembly_worker_index) < 50 then
 wait to be ordered on
OL_convassembly_worker_needs_material(A_convassembly_worker_index)
 set R_conveyor_station(A_convassembly_worker_index) state to active_state
 use R_conveyor_station(A_convassembly_worker_index) for u 7, 3 min // #
 set
V_convassembly_products_before_getting_material(A_convassembly_worker_index) to 0
 order 1 load from
OL_convassembly_worker_got_material(A_convassembly_worker_index) to continue
 end

 31

end

begin P_conveyor_unloading arriving procedure
 /*move into Q_infinite
 order 1 load from OL_staunloading_done to continue
 send to die*/

 move into Q_Julia_the_packer
 use R_Julia_the_packer for u 17.5, 2.5 sec
 order 1 load from OL_staunloading_done to continue
 //move into Q_packing
 send to P_inspection
end

begin P_DownTime_conveyor arriving procedure
 move into Q_dummy
 while 1=1 do begin
 wait for e 16 hr
 take down convassembly.M_sec1
 use R_Britta_the_problem_solver for w 1.5, 50 min
 bring up convassembly.M_sec1
 end
end

begin P_inspection arriving procedure
 use R_Julia_the_packer for u 50, 10 sec

 //set an atribute to track the parts and send them to the painting process, rework or
packing.
 set A_part_just_visiting_from_inspection to 1
 //send to P_packing
 send to oneof(3:P_rework_packing,5: P_repainting, 92:P_packing)
 if A_product_type <> 2 then begin
 if V_automatic_painting_station_investment = 0 then
 send to oneof(3:P_rework_packing,5: P_repainting, 92:P_packing)
 else
 send to oneof(3:P_rework_packing,1: P_repainting, 96:P_packing)
 end
 else
 send to oneof(3:P_rework_packing, 97:P_packing)
end

begin P_repainting arriving procedure

 if V_painting_inspection_done_by_Gert_investment = 0 then begin
 set priority to 0

 //Lift product to painting
 if V_painting_done_by_Julia_investment= 0 then
 use R_Julia_the_packer for u 2.5, 0.5 min

 //Paint the product
 if V_painting_done_by_Julia_investment = 0 then
 use R_Gert_the_storage_operator for ((w 1.5, 50)*pow(0.9,
V_reduce_painting_cycle_time_investment))*pow(0.5, V_automatic_painting_station_investment)
sec
 else
 use R_Julia_the_packer for ((w 1.5, 50)*pow(0.9,
V_reduce_painting_cycle_time_investment))*pow(0.5, V_automatic_painting_station_investment)
sec

 inc V_painting_refill by 1
 inc V_painting_repair by 1

 if V_painting_repair = 150 then begin
 use R_Gert_the_storage_operator for n 240, 18 sec
 set V_painting_repair to 0
 end

 if V_painting_refill = 20*pow(4,
V_increse_painting_refill_capacity_investment) then begin
 use R_Gert_the_storage_operator for u 3, 1 min
 set V_painting_refill to 0
 end

 32

 //Lift product from painting
 if V_painting_done_by_Julia_investment = 0 then
 use R_Julia_the_packer for u 2.5, 0.5 min

 set priority to 1
 end

 send to P_packing

end

begin P_rework_packing arriving procedure
 use R_Julia_the_packer for e 60 sec
 send to P_packing
end

begin P_packing arriving procedure

 if A_core_length = 5 then
 set A_core_length_index to 1
 else if A_core_length = 6 then
 set A_core_length_index to 2
 else
 set A_core_length_index to 3

 // CL are not painted but should be given an index
 if A_color = 0 then
 set A_color_index to 1
 else
 set A_color_index to A_color

 if A_product_type = 2
 set A_product_type_index to 3
 else if A_product_type = 3
 set A_product_type_index to 2
 else
 set A_product_type_index to 1

 if A_product_type = 2 then
 set A_color_index to 1

 set A_packing_boxes_index to (A_product_type_index-1)*9 + (A_color_index-1)*3 +
(A_core_length_index-1) + 1

 if Q_packing_boxes(A_packing_boxes_index) remaining space = 0 then
 wait to be ordered on OL_packing_boxes(A_packing_boxes_index)
 move into Q_packing_boxes(A_packing_boxes_index)
 order 1 load from OL_Julia_the_packer to continue

 if Q_packing_boxes(A_packing_boxes_index) remaining space = 0 then begin
 send to P_deliver_box
 end
 wait to be ordered on OL_packing_boxes_batch(A_packing_boxes_index)
end

begin P_deliver_box arriving procedure
 use R_Julia_the_packer for (u 2,1)*pow(0.75, V_reduce_packing_cykletime_investment)
min
 move into Q_deliver_box
 if V_increase_packing_boxes_size_investment = 0 then
 order 4 loads from OL_packing_boxes_batch(A_packing_boxes_index) to die
 else
 order 9 loads from OL_packing_boxes_batch(A_packing_boxes_index) to die

 order 1 load from OL_packing_boxes(A_packing_boxes_index) to continue

 // raw material, assembled components, galvanizing
 set A_direct_cost to 70+100+10
 // paint cost for every light except CL
 if A_product_type <> 2 then
 inc A_direct_cost by 5

 if A_repainted = 1 then
 inc A_direct_cost by 5

 33

 set A_direct_cost to A_direct_cost*5*pow(2, V_increase_packing_boxes_size_investment)

 // 220, 270, 270 per pair of ML, CL, HL
 if A_product_type = 1 then
 set A_income to 220*5*pow(2, V_increase_packing_boxes_size_investment)
 else
 set A_income to 270*5*pow(2, V_increase_packing_boxes_size_investment)
 inc C_income by A_income
 inc C_variable_costs by A_direct_cost
 send to die
end

begin P_DownTime_personell arriving procedure
 move into Q_dummy
 set A_personell_index = nextof(1,2,3,4,5,6,7,8,9,10)
 if A_personell_index = 1 then
 set A_rperson to R_Bosse_the_cutter_and_driller
 else if A_personell_index = 2 then
 set A_rperson to R_Britta_the_problem_solver
 else if A_personell_index = 3 then
 set A_rperson to R_Gert_the_storage_operator
 else if A_personell_index = 4 then
 set A_rperson to R_Julia_the_packer
 else if A_personell_index = 5 then
 set A_rperson to R_Sven_the_cutter
 else if A_personell_index = 6 then
 set A_rperson to R_burr_removal
 else if A_personell_index = 7 then
 set A_rperson to R_conveyor_station(1)
 else if A_personell_index = 8 then
 set A_rperson to R_conveyor_station(2)
 else if A_personell_index = 9 then
 set A_rperson to R_conveyor_station(3)
 else if A_personell_index = 10 then
 set A_rperson to R_conveyor_station(4)

 while 1=1 do begin
 wait for w 2,4 hr
 take down A_rperson
 wait for n 5, 0.5 min
 bring up A_rperson
 end
end

begin P_Ordering_task_C arriving procedure
 move into Q_dummy
 wait for 15 hr // 8h warmup, +7 h to order at 15:00

 while 1=1 do begin
 //Lights are given types
 set V_lights_to_order(1) to gamma 10.000000, 9.828000
 set V_lights_to_order(2) to gamma 42.045511, 0.923999
 set V_lights_to_order(3) to gamma 57.050206, 1.038909

 //The same number of lights that has gotten a type above is also given a
length.
 while (V_lights_to_order(1) + V_lights_to_order(2) +
V_lights_to_order(3))!=(V_lights_to_order(4) + V_lights_to_order(5) + V_lights_to_order(6))
do begin
 set V_lights_to_order(4) to 14.995349 + weibull 1.088598, 75.998416
 set V_lights_to_order(5) to uniform 33.500000, 33.500000
 set V_lights_to_order(6) to weibull 1.019285, 71.596129
 end

 //The same number of lights that has gotten a type above is also given a color.
 while (V_lights_to_order(1) + V_lights_to_order(2))!=(V_lights_to_order(7) +
V_lights_to_order(8) + V_lights_to_order(9)) do begin//and V_lights_to_order(7)%5!=0 and
V_lights_to_order(8)%5!=0 and V_lights_to_order(9)%5!=0 do begin
 set V_lights_to_order(7) to weibull 1.217632, 31.022829
 set V_lights_to_order(8) to weibull 1.170872, 23.941400
 set V_lights_to_order(9) to lognormal 4.485275, 0.343770
 end

 while V_lights_to_order(1)>0 do begin
 if V_lights_to_order(4) > 0 then begin
 if V_lights_to_order(7) > 0 then begin

 34

 inc V_lights_to_order_2(1) by 1
 dec V_lights_to_order(1) by 1
 dec V_lights_to_order(4) by 1
 dec V_lights_to_order(7) by 1
 end
 else if V_lights_to_order(8) > 0 then begin
 inc V_lights_to_order_2(2) by 1
 dec V_lights_to_order(1) by 1
 dec V_lights_to_order(4) by 1
 dec V_lights_to_order(8) by 1
 end
 else if V_lights_to_order(9) > 0 then begin
 inc V_lights_to_order_2(3) by 1
 dec V_lights_to_order(1) by 1
 dec V_lights_to_order(4) by 1
 dec V_lights_to_order(9) by 1
 end
 end
 else if V_lights_to_order(5) > 0 then begin
 if V_lights_to_order(7) > 0 then begin
 inc V_lights_to_order_2(4) by 1
 dec V_lights_to_order(1) by 1
 dec V_lights_to_order(5) by 1
 dec V_lights_to_order(7) by 1
 end
 else if V_lights_to_order(8) > 0 then begin
 inc V_lights_to_order_2(5) by 1
 dec V_lights_to_order(1) by 1
 dec V_lights_to_order(5) by 1
 dec V_lights_to_order(8) by 1
 end
 else if V_lights_to_order(9) > 0 then begin
 inc V_lights_to_order_2(6) by 1
 dec V_lights_to_order(1) by 1
 dec V_lights_to_order(5) by 1
 dec V_lights_to_order(9) by 1
 end
 end
 else if V_lights_to_order(6) > 0 then begin
 if V_lights_to_order(7) > 0 then begin
 inc V_lights_to_order_2(7) by 1
 dec V_lights_to_order(1) by 1
 dec V_lights_to_order(6) by 1
 dec V_lights_to_order(7) by 1
 end
 else if V_lights_to_order(8) > 0 then begin
 inc V_lights_to_order_2(8) by 1
 dec V_lights_to_order(1) by 1
 dec V_lights_to_order(6) by 1
 dec V_lights_to_order(8) by 1
 end
 else if V_lights_to_order(9) > 0 then begin
 inc V_lights_to_order_2(9) by 1
 dec V_lights_to_order(1) by 1
 dec V_lights_to_order(6) by 1
 dec V_lights_to_order(9) by 1
 end
 end
 end

 while V_lights_to_order(2)>0 do begin
 if V_lights_to_order(4) > 0 then begin
 if V_lights_to_order(7) > 0 then begin
 inc V_lights_to_order_2(10) by 1
 dec V_lights_to_order(2) by 1
 dec V_lights_to_order(4) by 1
 dec V_lights_to_order(7) by 1
 end
 else if V_lights_to_order(8) > 0 then begin
 inc V_lights_to_order_2(11) by 1
 dec V_lights_to_order(2) by 1
 dec V_lights_to_order(4) by 1
 dec V_lights_to_order(8) by 1
 end
 else if V_lights_to_order(9) > 0 then begin
 inc V_lights_to_order_2(12) by 1

 35

 dec V_lights_to_order(2) by 1
 dec V_lights_to_order(4) by 1
 dec V_lights_to_order(9) by 1
 end
 end
 else if V_lights_to_order(5) > 0 then begin
 if V_lights_to_order(7) > 0 then begin
 inc V_lights_to_order_2(13) by 1
 dec V_lights_to_order(2) by 1
 dec V_lights_to_order(5) by 1
 dec V_lights_to_order(7) by 1
 end
 else if V_lights_to_order(8) > 0 then begin
 inc V_lights_to_order_2(14) by 1
 dec V_lights_to_order(2) by 1
 dec V_lights_to_order(5) by 1
 dec V_lights_to_order(8) by 1
 end
 else if V_lights_to_order(9) > 0 then begin
 inc V_lights_to_order_2(15) by 1
 dec V_lights_to_order(2) by 1
 dec V_lights_to_order(5) by 1
 dec V_lights_to_order(9) by 1
 end
 end
 else if V_lights_to_order(6) > 0 then begin
 if V_lights_to_order(7) > 0 then begin
 inc V_lights_to_order_2(16) by 1
 dec V_lights_to_order(2) by 1
 dec V_lights_to_order(6) by 1
 dec V_lights_to_order(7) by 1
 end
 else if V_lights_to_order(8) > 0 then begin
 inc V_lights_to_order_2(17) by 1
 dec V_lights_to_order(2) by 1
 dec V_lights_to_order(6) by 1
 dec V_lights_to_order(8) by 1
 end
 else if V_lights_to_order(9) > 0 then begin
 inc V_lights_to_order_2(18) by 1
 dec V_lights_to_order(2) by 1
 dec V_lights_to_order(6) by 1
 dec V_lights_to_order(9) by 1
 end
 end
 end

 while V_lights_to_order(3)>0 do begin
 if V_lights_to_order(4) > 0 then begin
 inc V_lights_to_order_2(19) by 1
 dec V_lights_to_order(3) by 1
 dec V_lights_to_order(4) by 1
 end
 else if V_lights_to_order(5) > 0 then begin
 inc V_lights_to_order_2(20) by 1
 dec V_lights_to_order(3) by 1
 dec V_lights_to_order(5) by 1
 end
 else if V_lights_to_order(6) > 0 then begin
 inc V_lights_to_order_2(21) by 1
 dec V_lights_to_order(3) by 1
 dec V_lights_to_order(6) by 1
 end
 end

 while V_lights_to_order_2(1)>0 do begin
 dec V_lights_to_order_2(1) by 5
 increment V_market_request(1) by 5
 end
 while V_lights_to_order_2(4)>0 do begin
 dec V_lights_to_order_2(4) by 5
 increment V_market_request(2) by 5
 end
 while V_lights_to_order_2(7)>0 do begin
 dec V_lights_to_order_2(7) by 5
 increment V_market_request(3) by 5

 36

 end

 while V_lights_to_order_2(2)>0 do begin
 dec V_lights_to_order_2(2) by 5
 increment V_market_request(4) by 5
 end
 while V_lights_to_order_2(5)>0 do begin
 dec V_lights_to_order_2(5) by 5
 increment V_market_request(5) by 5
 end
 while V_lights_to_order_2(8)>0 do begin
 dec V_lights_to_order_2(8) by 5
 increment V_market_request(6) by 5
 end

 while V_lights_to_order_2(3)>0 do begin
 dec V_lights_to_order_2(3) by 5
 increment V_market_request(7) by 5
 end
 while V_lights_to_order_2(6)>0 do begin
 dec V_lights_to_order_2(6) by 5
 increment V_market_request(8) by 5
 end
 while V_lights_to_order_2(9)>0 do begin
 dec V_lights_to_order_2(9) by 5
 increment V_market_request(9) by 5
 end

 while V_lights_to_order_2(10)>0 do begin
 dec V_lights_to_order_2(10) by 5
 increment V_market_request(10) by 5
 end
 while V_lights_to_order_2(13)>0 do begin
 dec V_lights_to_order_2(13) by 5
 increment V_market_request(11) by 5
 end
 while V_lights_to_order_2(16)>0 do begin
 dec V_lights_to_order_2(16) by 5
 increment V_market_request(12) by 5
 end

 while V_lights_to_order_2(11)>0 do begin
 dec V_lights_to_order_2(11) by 5
 increment V_market_request(13) by 5
 end
 while V_lights_to_order_2(14)>0 do begin
 dec V_lights_to_order_2(14) by 5
 increment V_market_request(14) by 5
 end
 while V_lights_to_order_2(17)>0 do begin
 dec V_lights_to_order_2(17) by 5
 increment V_market_request(15) by 5
 end

 while V_lights_to_order_2(12)>0 do begin
 dec V_lights_to_order_2(12) by 5
 increment V_market_request(16) by 5
 end
 while V_lights_to_order_2(15)>0 do begin
 dec V_lights_to_order_2(15) by 5
 increment V_market_request(17) by 5
 end
 while V_lights_to_order_2(18)>0 do begin
 dec V_lights_to_order_2(18) by 5
 increment V_market_request(18) by 5
 end

 while V_lights_to_order_2(19)>0 do begin
 dec V_lights_to_order_2(19) by 5
 increment V_market_request(19) by 5
 end
 while V_lights_to_order_2(20)>0 do begin
 dec V_lights_to_order_2(20) by 5
 increment V_market_request(20) by 5
 end
 while V_lights_to_order_2(21)>0 do begin

 37

 dec V_lights_to_order_2(21) by 5
 increment V_market_request(21) by 5
 end

 set V_lights_to_order_2(1) to 0
 set V_lights_to_order_2(2) to 0
 set V_lights_to_order_2(3) to 0
 set V_lights_to_order_2(4) to 0
 set V_lights_to_order_2(5) to 0
 set V_lights_to_order_2(6) to 0
 set V_lights_to_order_2(7) to 0
 set V_lights_to_order_2(8) to 0
 set V_lights_to_order_2(9) to 0
 set V_lights_to_order_2(10) to 0
 set V_lights_to_order_2(11) to 0
 set V_lights_to_order_2(12) to 0
 set V_lights_to_order_2(13) to 0
 set V_lights_to_order_2(14) to 0
 set V_lights_to_order_2(15) to 0
 set V_lights_to_order_2(16) to 0
 set V_lights_to_order_2(17) to 0
 set V_lights_to_order_2(18) to 0
 set V_lights_to_order_2(19) to 0
 set V_lights_to_order_2(20) to 0
 set V_lights_to_order_2(21) to 0

 set A_iloop to 1
 while A_iloop <= 21 do begin
 increment C_market_requests_total by V_market_request(A_iloop)
 increment A_iloop by 1
 end

 order V_market_request(1)+V_market_request(4)+V_market_request(7)
 +V_market_request(10)+V_market_request(13)+V_market_request(16)
 +V_market_request(19) loads satisfying A_core_length = 5 from
OL_market_request to continue
 in case order not filled backorder on OL_market_request
 order V_market_request(2)+V_market_request(5)+V_market_request(8)
 +V_market_request(11)+V_market_request(14)+V_market_request(17)
 +V_market_request(20) loads satisfying A_core_length = 6 from
OL_market_request to continue
 order V_market_request(3)+V_market_request(6)+V_market_request(9)
 +V_market_request(12)+V_market_request(15)+V_market_request(18)
 +V_market_request(21) loads satisfying A_core_length = 7 from
OL_market_request to continue

 //wait for 1 day
 wait for 12 hr
 end
end

 38

9.3 Appendix 2: Visualization of the final system

Figure 9: The model during simulation

Figure 10: Overview of the system. Column by column from the left is: storage, cutters, burr

removal, cutting and drilling, batching for galvanization, galvanization (starting from top and moving

downwards), storage operator, middle storage, assembly line, packaging operator, bathing before

delivery (sorted into 21 types) and the last one is delivery queue before they are sent to die.

 39

9.5 Appendix 3: Flow chart

Because of the size of the flow chart it is only readable in the pdf format of this report. To view different details use the zoom function

of your pdf reader software. Printing the report will make reading the flow chart impossible.

